A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A review on knowledge graphs for healthcare: Resources, applications, and promises. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: This comprehensive review aims to provide an overview of the current state of Healthcare Knowledge Graphs (HKGs), including their construction, utilization models, and applications across various healthcare and biomedical research domains.

Methods: We thoroughly analyzed existing literature on HKGs, covering their construction methodologies, utilization techniques, and applications in basic science research, pharmaceutical research and development, clinical decision support, and public health. The review encompasses both model-free and model-based utilization approaches and the integration of HKGs with large language models (LLMs).

Results: We searched Google Scholar for relevant papers on HKGs and classified them into the following topics: HKG construction, HKG utilization, and their downstream applications in various domains. We also discussed their special challenges and the promise for future work.

Discussion: The review highlights the potential of HKGs to significantly impact biomedical research and clinical practice by integrating vast amounts of biomedical knowledge from multiple domains. The synergy between HKGs and LLMs offers promising opportunities for constructing more comprehensive knowledge graphs and improving the accuracy of healthcare applications.

Conclusions: HKGs have emerged as a powerful tool for structuring medical knowledge, with broad applications across biomedical research, clinical decision-making, and public health. This survey serves as a roadmap for future research and development in the field of HKGs, highlighting the potential of combining knowledge graphs with advanced machine learning models for healthcare transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2025.104861DOI Listing

Publication Analysis

Top Keywords

knowledge graphs
16
hkgs
8
public health
8
biomedical clinical
8
healthcare
5
applications
5
knowledge
5
review
4
review knowledge
4
graphs
4

Similar Publications