Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human breast milk-derived extracellular vesicles (HMEVs) have various physiological functions, including immune regulation, cell regeneration, and inflammation suppression, as well as potential therapeutic applications; however, research on the role of HMEVs in bone growth and bone remodeling is insufficient. This study examined the effects of extracellular vesicles derived from human breast milk on osteoblast differentiation and mineralization and elucidated their role in the prevention and treatment of osteoporosis. The study's results showed that HMEVs significantly enhance osteoblast proliferation, differentiation, and mineralization, as confirmed by increased expression of proteins and genes related to bone formation. These effects are mediated via the bone morphogenetic protein 2 (BMP2) and mitogen-activated protein kinase (MAPK) signaling pathways. In other words, this study suggests that HMEVs may have a beneficial effect on the prevention and treatment of osteoporosis by promoting differentiation and mineralization of bone cells through the BMP2 and MAPK signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1096620X251360922DOI Listing

Publication Analysis

Top Keywords

human breast
12
extracellular vesicles
12
signaling pathways
12
differentiation mineralization
12
breast milk-derived
8
milk-derived extracellular
8
enhance osteoblast
8
prevention treatment
8
treatment osteoporosis
8
mapk signaling
8

Similar Publications

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF

Purpose: Limited data is available assessing sequencing of antibody drug conjugates (ADCs) in patients with hormone receptor-positive (HR +), human epidermal growth factor 2 (HER2)-negative, HER2-low, and triple-negative metastatic breast cancer (MBC), including patients with brain metastases (BrM) or leptomeningeal disease (LMD). This study assesses the efficacy and safety of sequential sacituzumab govitecan (SG) and trastuzumab deruxtecan (T-DXd) in MBC and impact on chemotherapy (CTX).

Methods: This is a single-center, retrospective, cohort study in adult patients with HR + , HER2-negative, or low MBC who received T-DXd and/or SG.

View Article and Find Full Text PDF

Cholesterol biosynthesis is more activated in triple negative breast cancer (TNBC) than in other subtype breast cancer and plays essential role in facilitating TNBC. However, the regulatory network and how cholesterol biosynthesis contribute to TNBC development and progression are not well elucidated. Here, we found that reticulum membrane protein complex 2 (EMC2) is highly expressed in TNBC and predicts short survival of patients.

View Article and Find Full Text PDF

An 86-year-old woman was under follow-up at the Breast Surgery Department of our hospital for postoperative treatment for right breast cancer. During this period, a 22-mm cystic mass was identified in the pancreatic head. Its size gradually increased, and she was eventually referred to our department.

View Article and Find Full Text PDF

An immunocompetent mouse model of metastatic triple-negative breast cancer.

Methods Cell Biol

September 2025

LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia. Electronic address:

Breast cancer (BC) represents a major socio-economic challenge worldwide due to its high morbidity and mortality rates. Despite various therapeutic strategies, the heterogeneity of breast cancer and the resistance of tumour cells often lead to treatment failure. Consequently, the use of animal models of BC is crucial for understanding the cellular and molecular mechanisms involved in the different stages of carcinogenesis and for screening new drugs to assess their efficacy, potential safety and side effects.

View Article and Find Full Text PDF