98%
921
2 minutes
20
Superparamagnetic magnetite nanoparticles (FeO) have garnered considerable interest due to their unique magnetic properties and potential for integration into multifunctional biomaterials. In particular, their incorporation into bacterial cellulose (BC) matrices offers a promising route for developing sustainable and high-performance magnetic composites. Numerous studies have explored BC-magnetite systems; however, innovations combining ex situ coprecipitation synthesis within BC matrices, tailored reagent molar ratios, stirring protocols, and purification processes remain limited. This study aimed to optimize the ex situ coprecipitation method for synthesizing superparamagnetic magnetite nanoparticles embedded in BC membranes, focusing on enhancing particle stability and crystallinity. BC membranes containing varying concentrations of magnetite (40%, 50%, 60%, and 70%) were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The resulting magnetic BC membranes demonstrated homogenous dispersion of nanoparticles, improved crystallite size (6.96 nm), and enhanced magnetic saturation (Ms) (50.4 emu/g), compared to previously reported methods. The adoption and synergistic optimization of synthesis parameters-unique to this study-conferred greater control over the physicochemical and magnetic properties of the composites. These findings position the optimized BC-magnetite nanocomposites as highly promising candidates for advanced applications, including electromagnetic interference (EMI) shielding, electronic devices, gas sensors, MRI contrast agents, and targeted drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300837 | PMC |
http://dx.doi.org/10.3390/membranes15070198 | DOI Listing |
J Colloid Interface Sci
September 2025
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:
Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).
View Article and Find Full Text PDFBiomacromolecules
September 2025
City University of Applied Sciences, Neustadtswall 30, Bremen 28199, Germany.
Fibrinogen nanofiber scaffolds hold promise for tissue engineering and wound healing due to their similarity to fibrin clots. We studied how alkaline salts (Na, K) influence fibrinogen precipitation during drying of highly saline dispersions. In situ roughness (Aq) monitoring revealed coprecipitation of salts and fibrinogen.
View Article and Find Full Text PDFRSC Adv
August 2025
College of Energy Engineering, Huanghuai University Zhumadian 463000 Henan P. R. China
Metal-organic framework (MOF) materials have attracted significant attention due to their high surface area and adjustable pore structure, which enable potential applications across various fields. However, their practical application is often hindered by poor electrical conductivity and limited structural stability. Integrating MOF with two-dimensional transition metal carbides/nitrides (MXene) offers a powerful strategy to overcome these limitations, synergistically combining the porous architecture of MOF with the exceptional conductivity and mechanical robustness of MXenes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.
Electrochemical proton storage offers grid-scale energy storage system with long lifespan, great safety, and eco-friendliness. However, preparing proton storage materials with balanced conductivity, activity, and stability remains challenging due to suboptimal structure design. Herein, we report atomic-level engineering of d-p orbital hybridization strategy to regulate transition metal (V/Fe) d-band centers.
View Article and Find Full Text PDFSci Rep
September 2025
School of Chemistry and Environment Engineering, Pingdingshan University, 467000, Pingdingshan, China.
Biochar is an excellent adsorbent for organic pollutants, but the removal effect for inorganic phosphorus is not satisfactory. In order to improve its phosphorus removal effect, ZnAl-LDH modified plane trees' bark biochar was presented in this paper. The plane trees' bark biochar was prepared by chemical-activation method by utilizing KCO as the activation agent.
View Article and Find Full Text PDF