Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emotional memories require coordinated activity of the amygdala and hippocampus. Human intracranial recordings have shown that formation of aversive memories involves an amygdala theta-hippocampal gamma phase code. Yet, the mechanisms engaged during translation of aversive experiences into memories and subsequent retrieval remain unclear. Directly recording from human amygdala and hippocampus, here we show that hippocampal gamma activity increases for correctly remembered aversive scenes. Crucially, patterns of amygdala high amplitude gamma activity at encoding are reactivated in the hippocampus, but not amygdala, during both aversive encoding and retrieval. Trial-specific hippocampal gamma patterns showing highest representational similarity with amygdala activity at encoding are reactivated in the hippocampus during aversive retrieval. This reactivation process occurs against a background of gamma activity that is otherwise decorrelated between encoding and retrieval. Thus, phasic hippocampal gamma responses track the retrieval of aversive memories, with activity patterns apparently entrained by the amygdala during encoding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12289934PMC
http://dx.doi.org/10.1038/s41467-025-61928-2DOI Listing

Publication Analysis

Top Keywords

hippocampal gamma
12
gamma activity
12
amygdala
8
gamma patterns
8
amygdala hippocampus
8
aversive memories
8
activity encoding
8
encoding reactivated
8
reactivated hippocampus
8
encoding retrieval
8

Similar Publications

Purpose: The rapid onset of anxiolytic drugs without cognitive or motor impairments remains an unmet need. This study evaluated the acute anxiolytic effects of Salvia heldreichiana essential oil in rats, measuring anxiety-related behaviors, hippocampal levels of serotonin, noradrenaline, gamma-aminobutyric acid GABA, and serum cortisol.

Method: Forty-eight male Wistar albino rats were divided into two experiments.

View Article and Find Full Text PDF

Background: The hippocampus plays a critical role in psychosis, with reduced volume observed across the psychosis continuum. These structural changes are associated with cognitive deficits, symptom severity, and increased risk of psychosis progression. Elevated hippocampal perfusion and glutamate/GABA (gamma-aminobutyric acid) imbalance further suggest metabolic dysregulation as a key mechanism.

View Article and Find Full Text PDF

Object recognition memory (ORM) allows animals to distinguish between novel and familiar items. When reactivated during recall in the presence of a novel object, a consolidated ORM can be destabilized and linked to that generated by the novel object through reconsolidation. The CA1 region of the dorsal hippocampus contributes to ORM destabilization and reconsolidation, with mechanisms involving theta/gamma cross-frequency coupling (hPAC) and synaptic plasticity modulation.

View Article and Find Full Text PDF

GABA receptor availability in clinical high-risk and first-episode psychosis: a [C]Ro15-4513 positron emission tomography study.

Mol Psychiatry

September 2025

Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.

Disrupted gamma-aminobutyric acid (GABA) neurotransmission may contribute to the pathophysiology of schizophrenia. Reductions in hippocampal GABAergic neurons have been found in schizophrenia, and increased hippocampal perfusion has been described in schizophrenia and in people at clinical high-risk for psychosis (CHRp). We have also found decreases in hippocampal GABA receptors containing the α5 subunit (GABARα5) in a well-validated neurodevelopmental rat model of relevance for schizophrenia.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is an endogenously produced gasotransmitter that has garnered growing attention for its critical roles in cellular signalling and brain function. It regulates NMDA receptors during long-term potentiation, a fundamental mechanism underlying memory consolidation and influences neurotransmission and essential neurophysiological functions. HS is synthesized by three enzymes: cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MST) within the cell.

View Article and Find Full Text PDF