Publications by authors named "Daniel Pacheco-Estefan"

Extinction learning-the suppression of a previously acquired fear response-is critical for adaptive behaviour and core for understanding the aetiology and treatment of anxiety disorders. Electrophysiological studies in rodents have revealed critical roles of theta (4-12 Hz) oscillations in amygdala and hippocampus during both fear learning and extinction, and engram research has shown that extinction relies on the formation of novel, highly context-dependent memory traces that suppress the initial fear memories. Whether similar processes occur in humans and how they relate to previously described neural mechanisms of episodic memory formation and retrieval remains unknown.

View Article and Find Full Text PDF

Emotional memories require coordinated activity of the amygdala and hippocampus. Human intracranial recordings have shown that formation of aversive memories involves an amygdala theta-hippocampal gamma phase code. Yet, the mechanisms engaged during translation of aversive experiences into memories and subsequent retrieval remain unclear.

View Article and Find Full Text PDF

Visual working memory depends on both material-specific brain areas in the ventral visual stream (VVS) that support the maintenance of stimulus representations and on regions in the prefrontal cortex (PFC) that control these representations. How executive control prioritizes working memory contents and whether this affects their representational formats remains an open question, however. Here, we analyzed intracranial EEG (iEEG) recordings in epilepsy patients with electrodes in VVS and PFC who performed a multi-item working memory task involving a retro-cue.

View Article and Find Full Text PDF

Computational models and in vivo studies in rodents suggest that the emergence of gamma activity (40-140 Hz) during memory encoding and retrieval is coupled to opposed-phase states of the underlying hippocampal theta rhythm (4-9 Hz). However, direct evidence for whether human hippocampal gamma-modulated oscillatory activity in memory processes is coupled to opposed-phase states of the ongoing theta rhythm remains elusive. Here, we recorded local field potentials (LFPs) directly from the hippocampus of 10 patients with epilepsy, using depth electrodes.

View Article and Find Full Text PDF

Electrophysiological studies in rodents show that active navigation enhances hippocampal theta oscillations (4-12 Hz), providing a temporal framework for stimulus-related neural codes. Here we show that active learning promotes a similar phase coding regime in humans, although in a lower frequency range (3-8 Hz). We analyzed intracranial electroencephalography (iEEG) from epilepsy patients who studied images under either volitional or passive learning conditions.

View Article and Find Full Text PDF