98%
921
2 minutes
20
Background: Male factors contribute to ∼50% of all infertility cases globally and are a major contributor to escalating use of ART. In most instances, sub-fertile men retain the ability to produce spermatozoa, albeit with reduced quality and function. By necessity, an important feature of ART is the use of technologies that bypass the natural selection barriers that prevent poor-quality spermatozoa from participating in fertilization. This means that ART carries a significant risk of facilitating fertilization with poor-quality gametes harbouring undetected DNA damage and/or altered epigenomes. Such a scenario may account for the epidemiological links between the use of 'high intervention' technologies [e.g. ICSI] and an increased risk of adverse offspring outcomes. Such data highlight a pressing need for improved sperm selection tools that better mimic natural selection barriers, to ensure only the highest-quality spermatozoa are used for ART.
Objective And Rationale: Current sperm selection techniques for ART and the processes underpinning sperm maturation have often been considered independently and therefore reviewed separately. Here we outline the requirement for connecting research paradigms towards advancing clinical outcomes. This review highlights the importance of combining our advancing knowledge of sperm maturation biology with the pursuit of rational sperm selection strategies for the clinic; specifically, this narrative review summarizes the current clinical technologies used for sperm selection with a focus on their physiological relevance and limitations. We have given consideration to the events associated with sperm maturation and the importance of zona pellucida (ZP) binding as inspiration to inform the development of the next generation of sperm selection strategies. The connections and information presented should provide utility and interest for both clinicians and reproductive biologists alike.
Search Methods: The PubMed database was queried using the keywords: sperm selection/function/DNA quality/epigenome, ART, ICSI, male infertility, capacitation, zona pellucida, sperm-zona pellucida binding, DNA damage, and biofabrication. These keywords were combined with other relevant phrases. Literature was restricted to peer-reviewed articles in English (published between 1972 and 2024) with references within these articles also searched.
Outcomes: During natural conception, high-quality sperm are 'selected', maximizing the chances of fertilization with healthy gametes carrying intact genomic/epigenetic cargo. This sub-population of spermatozoa possess the capacity to interact with the female reproductive tract and complete the suite of functional maturation processes required for successful fertilization and initiation of embryonic development. However, ART 'high intervention' strategies bypass these selective barriers leading to an increased risk of inadvertently transferring genomic defects to the offspring with potential downstream consequences for offspring health. This review contextualizes why current sperm selection technologies have provided only minor improvement to live birth rates following ART. We posit that capitalizing on sperm-ZP binding (the penultimate step of successful fertilization) with novel ZP mimetic technologies provides an attractive, but understudied, tool for clinical selection of fertilization-competent spermatozoa for ART improvement.
Limitations Reasons For Caution: The risk of bias in the interpretation of findings for a narrative review cannot be completely eliminated. Literature was limited to the language the authors speak: English.
Wider Implications: ART has provided transformative advancement for infertile couples, however, gaps in our fundamental understanding of how the best gametes are 'selected' during natural conception, which when unaccounted for during clinical conception, present a risk of continued reliance on ART and health consequences for the next generation. The purpose of this article was to contextualize our current knowledge across both sperm maturation events and current selection strategies for these cells in the clinic. We outline the potential for improved clinical outcomes through the advancement of our understanding in gamete biology in concert with the development of novel methods for artificial gamete selection.
Study Funding/competing Interests: No external funding, but financial support was received from the School of Environmental and Life Sciences, University of Newcastle, Australia. R.J.A. is a scientific advisor to Memphasys Ltd, a biotechnology company with interests in reproductive health and responsible for developing the Felix™ electrophoretic sperm isolation device. R.J.A. receives salary and grant from, and has stock in, Memphasys Ltd. The other authors declare no conflicts of interest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282954 | PMC |
http://dx.doi.org/10.1093/hropen/hoaf040 | DOI Listing |
PLoS One
September 2025
School of Computer Science, CHART Laboratory, University of Nottingham, Nottingham, United Kingdom.
Background And Objective: Male fertility assessment through sperm morphology analysis remains a critical component of reproductive health evaluation, as abnormal sperm morphology is strongly correlated with reduced fertility rates and poor assisted reproductive technology outcomes. Traditional manual analysis performed by embryologists is time-intensive, subjective, and prone to significant inter-observer variability, with studies reporting up to 40% disagreement between expert evaluators. This research presents a novel deep learning framework combining Convolutional Block Attention Module (CBAM) with ResNet50 architecture and advanced deep feature engineering (DFE) techniques for automated, objective sperm morphology classification.
View Article and Find Full Text PDFiScience
September 2025
Department of Animal Science, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269-4163, USA.
Recent studies suggested that treating sperm with R848, a ligand for the X-linked Toll-like receptors 7 and 8 (TLR7/8) in mice, goats, and cattle, could selectively reduce the motility of X chromosome bearing sperm (X-sperm). This reduction enables the separation of X- and Y-sperm and thereby sex selection. However, through three species and multiple methods, our results challenged prior published data.
View Article and Find Full Text PDFAndrology
September 2025
Department of Urology, Peking University First Hospital, Beijing, China.
Background: Non-obstructive azoospermia represents the most severe form of male infertility. The heterogeneous nature of focal spermatogenesis within the testes of non-obstructive azoospermia patients poses significant challenges for accurately predicting sperm retrieval rates.
Objectives: To develop a machine learning-based predictive model for estimating sperm retrieval rates in patients with non-obstructive azoospermia.
Mol Nutr Food Res
September 2025
Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
Early-life programming is a major determinant of lifelong metabolic health, yet current preventive strategies focus almost exclusively on maternal factors. Emerging experimental and preclinical data reveal that a father's diet before conception, particularly high-fat intake, also shapes offspring physiology. Here, we synthesize the latest evidence on how such diets remodel the sperm epigenome during two discrete windows of vulnerability: (i) testicular spermatogenesis, via DNA methylation and histone modifications, and (ii) post-testicular epididymal maturation, where small non-coding RNAs are selectively gained.
View Article and Find Full Text PDFNat Genet
September 2025
State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China. su
Systematic characterization of the molecular states of cells in livestock tissues is essential for understanding the cellular and genetic mechanisms underlying economically and ecologically important physiological traits. Here, as part of the Farm Animal Genotype-Tissue Expression (FarmGTEx) project, we describe a comprehensive reference map including 1,793,854 cells from 59 bovine tissues in calves and adult cattle, spanning both sexes, which reveals intra-tissue and inter-tissue cellular heterogeneity in gene expression, transcription factor regulation and intercellular communication. Integrative analysis with genetic variants that underpin bovine monogenic and complex traits uncovers cell types of relevance, such as spermatocytes, responsible for sperm motility and excitatory neurons for milk fat yield.
View Article and Find Full Text PDF