Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Controlled protein assembly is an enabling technology, in particular, for biomaterials fabrication. Here, we report protein recognition and assembly by a phosphate-containing macrocycle (). We show that the -symmetric phosphocavitand is a versatile receptor for N-terminal residues or arginine but not lysine. Using atomic resolution X-ray diffraction data, we reveal the precise details of N-terminal complexation in the β-propeller protein lectin (RSL). In some cocrystal structures, a tetrahedral cluster of the phosphocavitand occupies one end of the β-propeller fold, providing a node for protein assembly. The macrocycle cluster is compatible with different types of precipitants, a broad pH range, and zinc complexation. We demonstrate system control with an arginine-enriched RSL that alters the overall assembly due to selective arginine complexation by . A lysozyme- cocrystal structure also demonstrates arginine complexation by the macrocycle. An alternative macrocycle cluster occurs with an engineered RSL bearing an extended N-terminus. In this structure, involving zinc ligation at the N-terminus, the macrocycle forms trimeric clusters and four such clusters form cage-like substructures within the tetrahedral protein framework. Thus, N-terminal complexation in combination with phosphocavitand self-assembly provides new routes to protein crystal engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333348PMC
http://dx.doi.org/10.1021/jacs.5c08121DOI Listing

Publication Analysis

Top Keywords

protein recognition
8
recognition assembly
8
protein assembly
8
n-terminal complexation
8
macrocycle cluster
8
arginine complexation
8
protein
7
assembly
5
macrocycle
5
complexation
5

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.

View Article and Find Full Text PDF

Coronary periarteritis in IgG4-RD: A case series.

Clin Rheumatol

September 2025

Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55906, USA.

Objectives: IgG4-related disease (IgG4-RD) can affect multiple organ systems, with coronary artery involvement being rare. Coronary periarteritis may lead to complications such as myocardial infarction and ischemic cardiomyopathy. This case series characterizes the clinical and radiological features, complications, and treatment strategies in patients with IgG4-RD-associated coronary periarteritis.

View Article and Find Full Text PDF

Promiscuity, or selectivity on a spectrum, is an encoded feature in biomolecular anion recognition. To unravel the molecular drivers of promiscuous anion recognition, we have employed a comprehensive approach - spanning experiment and theory - with the Staphylococcus carnosus nitrate regulatory element A (ScNreA) as a model. Thermodynamic analysis reveals that ScNreA complexation with native nitrate and nitrite or non-native iodide is an exothermic process.

View Article and Find Full Text PDF

Comparative efficacy and safety of PSCA CAR-engineered Vδ1 γδ T cells for immunotherapy of pancreatic cancer.

J Immunother Cancer

September 2025

Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of California, Irvine, California, USA

Background: γδ T cells possess unique immunological features including tissue tropism, major histocompatibility complex-independent antigen recognition, and hybrid T/natural killer cell properties that make them promising candidates for cancer immunotherapy. However, the therapeutic potential of Vδ1 γδ T cells, particularly when engineered with chimeric antigen receptors (CARs), remains underexplored in solid tumors such as pancreatic cancer (PC), largely due to their low abundance in peripheral blood and challenges in ex vivo expansion. This study aims to directly compare the preclinical safety and efficacy among CAR-engineered Vδ1 γδ T cells, Vδ2 γδ T cells, and conventional αβ T cells.

View Article and Find Full Text PDF