98%
921
2 minutes
20
Leaf anatomical structure and stomata play pivotal roles in optimizing and regulating photosynthesis and transpiration. Exploring the plastic variability and allometric relationships of leaf anatomical and stomatal traits across an elevational gradient is of great significance for revealing plants' adaptation strategies to varying environments. This study focused on Quercus variabilis distributed at elevations of 800-1500 m on Mt. Li, a warm-temperate forest zone in China. We assessed the elevational variation in leaf anatomical and stomatal traits, and determined the allometric relationships among these traits using standardized major axis regression. With increasing elevation, the five anatomical traits overall exhibited a synergistic increasing trend, including leaf thickness (LT), palisade tissue thickness (PTT), spongy tissue thickness (STT), upper epidermis thickness (UET), and lower epidermis thickness (LET). Stomatal length (SL), width (SW), and area (SA) presented trend first increasing then decreasing, while stomatal density (SD) and stomatal area fraction (SAF) demonstrated the opposite pattern. SAF was primarily determined by SD rather than SA, despite a stable negative correlation between SD and SA. Additionally, five anatomical traits were significantly positively correlated with SD and negatively correlated with SA. Importantly, PTT, STT, LT, and SD, exhibiting higher plastic variability, had allometric relationships with other traits and demonstrated a faster rate of change. Our findings suggest that Q. variabilis leaves tend to be thicker, with smaller and denser stomata at higher elevations. The plastic adjustments of palisade tissue, spongy tissue, and stomatal density are crucial for Q. variabilis to adapt to heterogeneous habitats caused by elevational gradients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11120-025-01161-6 | DOI Listing |
Background And Aims: Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.
View Article and Find Full Text PDFPlant Physiol
September 2025
School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom.
Stomatal pores govern the tradeoff between CO₂ assimilation and water loss, and optimizing their performance is critical for crop resilience, particularly under dynamic field environments. Here, we show that overexpression of Triticum aestivum EPIDERMAL PATTERNING FACTOR1 (TaEPF1) in bread wheat (Triticum aestivum) reduces leaf stomatal density in a leaf surface-specific manner, with a greater decline on the abaxial surface than on the adaxial surface. TaEPF1 overexpressors exhibited substantially lower stomatal conductance than wild-type (WT) control plants, which resulted in diffusional constraints limiting photosynthesis when measured under monochromatic red light.
View Article and Find Full Text PDFAdv Biol (Weinh)
September 2025
Plant Biomechanics Group @ Botanic Garden, University of Freiburg, Freiburg, Germany.
The mechanisms underlying leaf unfolding remain largely speculative and are often inferred from mathematical models. Peltate leaves, unlike typical foliage leaves, frequently emerge in a "rolled-up" state. This study investigates mechanisms related to the unrolling process in the peltate species Syngonium podophyllum by analyzing anatomical and morphological changes and quantifying forces that arise during unrolling.
View Article and Find Full Text PDFJ Exp Bot
September 2025
School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
Distinct physiological and anatomical traits can lead to substantial variation in photosynthetic efficiency among plant varieties, which may, in turn, impact agronomically important traits. We conducted a comprehensive comparative analysis of leaf physiology, anatomy and biochemistry in Solanum lycopersicum (LEA) a modern inbred variety suited for the processing industry and Solanum pennellii (Lost accession LA5240) a drought-tolerant, green-fruited wild species to investigate differences in photosynthetic performance and stomatal physiology. Lost exhibited higher photosynthetic capacity due to both biochemical and anatomical features.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
You and I Clinic, Seoul, Republic of Korea.
Nasolabial folds significantly impact facial appearance and are a common aesthetic concern. This article reviews anatomic considerations and filler injection techniques for treating these folds, with a focus on the Korean population. The dermal filler used in this study is Maili hyaluronic acid filler (Sinclair Pharma), derived from a novel proprietary manufacturing technology known as OxiFree™ technology (Kylane Laboratoires , Switzerland).
View Article and Find Full Text PDF