Coupling between bacterial phylogenetic diversity and heterotrophic productivity in a coastal ecosystem affected by estuarine plumes.

ISME Commun

State Key Laboratory of Marine Environmental Science / National Observation and Research Station for the Taiwan Strait Marine Ecosystem (T-SMART) / Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies / College of the Environment and Ecology, Xiamen University, Xiamen, Fuji

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the diversity-productivity relationship (DPR) is crucial for elucidating the ecological functions of marine bacterioplankton. However, studies have often focused on species diversity, neglecting phylogenetic diversity, which may offer deeper insights into the complex ecological processes shaping DPR in natural systems. This study addressed this gap by exploring the role of phylogenetic diversity in bacterioplankton productivity in the northern South China Sea, a coastal ecosystem influenced by estuarine plumes. We aimed to disentangle the mechanisms driving DPR and investigate how estuarine plumes modulate these processes. Our results show that the substantial enhancement of phytoplankton production by the Pearl River plume increased bacterial production, abundance, and cell-specific production. From a metacommunity perspective, phylogenetic diversity, rather than species diversity, significantly enhanced productivity. The plume reduced positive species interactions and complementarity but amplified the selection effect, where increased phylogenetic diversity raised the likelihood of including highly productive species. In plume-impacted communities, distantly related and highly productive clades dominated the DPR. Phylogenetically diverse assemblages exhibited enhanced niche differentiation that facilitated the stable coexistence of productive clades by mitigating exclusion. We also delineated how the negative selection effect and increased species exclusion contributed to the decoupling of species diversity from productivity in communities unaffected and affected by the plume, respectively. These findings highlighted the pivotal role of estuarine plumes in enhancing productivity via increased phylogenetic diversity and in eliciting complex adaptive responses within bacterioplankton communities. Future comprehensive assessments will be needed to elucidate the implications of these dynamics on marine ecosystem services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271574PMC
http://dx.doi.org/10.1093/ismeco/ycaf102DOI Listing

Publication Analysis

Top Keywords

phylogenetic diversity
24
estuarine plumes
16
species diversity
12
diversity
9
coastal ecosystem
8
selection increased
8
increased phylogenetic
8
highly productive
8
productive clades
8
phylogenetic
6

Similar Publications

Hemiptera, the fifth most diverse insect order, are characterized by their high diversity in deep time, with 145 known extinct families. However, the precise timing of the origin of Hemiptera lineages has remained uncertain. Traditional approaches, molecular clock analyses and fossil calibrations, have overlooked much of this extinct diversity by failing to incorporate key fossil data.

View Article and Find Full Text PDF

Uncovering new lineages in the Sunda pangolin () with museum mitogenomics.

Biol Lett

September 2025

Department of Vertebrate Zoology, Division of Mammals, Smithsonian National Museum of Natural History, Washington, DC, USA.

Accurately identifying evolutionarily significant units (ESUs) is crucial for conservation planning, especially for species like pangolins threatened by overhunting and habitat loss. ESUs help categorize different pangolin populations, aiding in understanding their genetic diversity and distribution, which is vital for targeted conservation efforts. This research generated mitochondrial genomes from historical museum specimens of Sunda pangolins () from underrepresented locations, uncovering a new evolutionary lineage from the Mentawai Islands that diverged from Indochina and west Sundaland populations around 760 000 years ago.

View Article and Find Full Text PDF

Lentinula edodes (shiitake mushroom) is a widely cultivated edible and medicinal fungus, valued for its bioactive compounds. While East Asian strains have been well studied, Indian populations remain under-characterized. This study explores the genetic and functional diversity of five Indian-origin L.

View Article and Find Full Text PDF

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF