Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: To evaluate the feasibility of Monte Carlo (MC)-based patient-specific quality assurance (PSQA) for MR-guided online adaptive radiotherapy and to explore the potential to eliminate the post-delivery measurement-based PSQA.

Material And Methods: A total of 113 cases from two institutions, treated on MR-Linac machines, were included in the study. A customized GPU-accelerated, Monte Carlo-based secondary dose verification software (ART2Dose) was developed and integrated into the QA workflow, accounting for a 1.5 Tesla magnetic field. PSQA included ArcCheck (AC) delivery QA and online MC calculation-based QA. Reference plans underwent offline validation with AC and MC, while adapt-to-shape (ATS) plans were processed through MC and post-delivery QA. Gamma pass rates (GPR) with 3 %/2mm criteria were compared statistically across methods. Radcalc was applied to compare point dose difference with MC.

Results: MC QA achieved GPRs of 97.5 % ± 2.0 % and 97.1 % ± 2.9 % for reference and ATS plans, comparable to AC QA (97.6 % ± 2.0 % and 96.9 % ± 3.0 %). Wilcoxon signed-rank test showed statistically significant differences between reference and ATS plan QA (p < 0.05), but a Pearson correlation coefficient of 0.76 confirmed a linear relationship for MC GPR. Lung cases exhibited lower GPRs with MC compared to AC QA. MC QA demonstrated supaireerior point dose agreement with TPS (1.7 % ± 1.2 %) compared to RadCalc (4.1 % ± 1.7 %). No significant differences were observed between institutions.

Conclusion: MC-based QA is a robust tool for adaptive QA workflows in 1.5-T MR-Linac systems. It enhances efficiency and potentially supports the elimination of post-delivery measurement-based QA for adaptive plans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273433PMC
http://dx.doi.org/10.1016/j.phro.2025.100800DOI Listing

Publication Analysis

Top Keywords

feasibility monte
8
monte carlo-based
8
patient-specific quality
8
quality assurance
8
tesla magnetic
8
online adaptive
8
adaptive radiotherapy
8
ats plans
8
reference ats
8
carlo-based patient-specific
4

Similar Publications

A Monte Carlo Method for Estimating Secondary Photon Yields from Beta-emitting Radionuclides Concentrated in Environmental Soil.

Health Phys

September 2025

Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.

External exposure due to secondary photons (predominantly bremsstrahlung) generated from electron source emissions in environmental soil are of concern due to their ability to deposit significant amounts of ionizing energy to organs and tissues within the body. The "condensed history method" employed in many modern Monte Carlo (MC) codes may be used to simulate secondary photon yields (given as photons per beta decay) arising from electron source emissions with relatively few assumptions regarding the secondary photon spatial, energy, and angular dependencies. These yields may in turn be used to derive protection quantities such as secondary photon effective dose rate (DR) and risk coefficients for a variety of idealized external exposure scenarios.

View Article and Find Full Text PDF

Development and characterization of a prototype selenium-75 high dose rate brachytherapy source.

Med Phys

September 2025

Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada.

Background: Se ( 120 days, 215 keV) offers advantages over Ir ( 74 days, 360 keV) as a high dose rate brachytherapy source due to its lower gamma energy and longer half-life. Despite its widespread use in industrial gamma radiography, a Se brachytherapy source has yet to be manufactured.

Purpose: A novel Se-based source design with a vanadium diselenide core, titled the SeCure source, was proposed.

View Article and Find Full Text PDF

Hydrogen energy is pivotal for driving sustainable development and achieving deep decarbonization; yet, its storage remains a significant challenge. Notably, depleted methane reservoirs can serve as a promising large-scale solution for underground hydrogen storage (UHS). Based on adsorption experiments, Monte Carlo and molecular dynamics methods, the adsorption behavior of H and CH in anthracite and the applicability of five models were discussed.

View Article and Find Full Text PDF

Integrated Experimental and FLUKA Simulation for Enhanced Radiation Safety in Open-Ceiling Radiographic Testing Facilities.

J Radiol Prot

September 2025

Welding Engineering R&D Team, Hanwha Ocean Co Ltd, 3370, Geoje-daero, Harmony Center 4th Floor, 3370 Geoje-daero, Geoje, Gyeongsangnam-do, 53302, Korea (the Republic of).

Radiographic testing (RT) is a critical non-destructive testing (NDT) method for ensuring the structural integrity of pipe welds through quantitative detection of internal defects. However, radiation safety concerns often lead to overly conservative regulatory restrictions, particularly affecting open-ceiling radiographic facilities through excessive limitations on irradiation direction and shielding, thereby reducing productivity. This study conducted quantitative analyses and on-site radiation measurements under varying irradiation angles and shielding conditions in an open-ceiling RT facility located within a pipe fabrication workshop.

View Article and Find Full Text PDF

This study aimed to develop population pharmacokinetic (PopPK) models for intravenous sulfamethoxazole (SMX) and trimethoprim (TMP) to optimize dosing regimens for the treatment of pneumonia using these models. A prospective study was conducted in 79 patients treated with intravenous trimethoprim-sulfamethoxazole. PopPK models were developed using nonlinear mixed-effect modeling to evaluate the effects of liver function, kidney function, and genetic polymorphisms ( and ) on pharmacokinetic parameters.

View Article and Find Full Text PDF