98%
921
2 minutes
20
A C-nucleoside analog having pyren-1-ylpyridine as the base moiety has been synthesized and incorporated in the middle of a short oligodeoxynucleotide. A portion of this oligonucleotide is cyclopalladated at the modified residue, and the potential of both the metal-free and the palladacyclic oligonucleotide as hybridization probes for single-nucleotide polymorphism genotyping is assessed by melting studies on relevant duplexes using various techniques. Conventional ultraviolet (UV) melting profiles at 260 nm reveal considerable destabilization of the palladacyclic duplexes relative to their metal-free counterparts. Circular dichroism melting temperatures are higher than their UV counterparts, especially with the palladacyclic duplexes. Cyclopalladation markedly reduces the fluorescence emission of the pyrenylpyridine moiety, but both the metal-free and the palladacyclic oligonucleotide exhibit a qualitatively similar pattern of increased fluorescence on hybridization with a complementary sequence, consistent with the pyrene ring being "pushed out" of the base stack. Emission at low temperature is dependent on the nucleobase paired with the pyrenylpyridine base surrogate with both of the modified oligonucleotides. This discrimination is stronger with the palladacyclic oligonucleotide, possibly owing to Pd(II)-mediated base pairing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202500474 | DOI Listing |
Chembiochem
July 2025
Department of Chemistry, University of Turku, Henrikinkatu 2, 20100, Turku, Finland.
A C-nucleoside analog having pyren-1-ylpyridine as the base moiety has been synthesized and incorporated in the middle of a short oligodeoxynucleotide. A portion of this oligonucleotide is cyclopalladated at the modified residue, and the potential of both the metal-free and the palladacyclic oligonucleotide as hybridization probes for single-nucleotide polymorphism genotyping is assessed by melting studies on relevant duplexes using various techniques. Conventional ultraviolet (UV) melting profiles at 260 nm reveal considerable destabilization of the palladacyclic duplexes relative to their metal-free counterparts.
View Article and Find Full Text PDFCurr Protoc
July 2022
Institute of Chemical Technology, Matunga, Mumbai, India.
Modification of nucleosides via cross-coupling processes has been carried out extensively on unprotected halonucleosides to produce functionalized nucleosides that are often developed for incorporation into oligonucleotides or used as fluorescent probes. This approach requires protection of the 5'-OH with the 4,4'-dimethoxytrityl (DMTr) group, which is complicated and a common cause of reaction failure. Here we report a method for direct functionalization of 5'-O-DMTr-5-iodo-2'-deoxyuridine via Suzuki-Miyaura cross-coupling, Heck alkenylation, and carboamidation.
View Article and Find Full Text PDFJ Inorg Biochem
September 2021
Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland. Electronic address:
A C-nucleoside derivative of phenylpyridine or the respective palladacycle was incorporated at either 3'- or 5'-terminus of a short oligodeoxynucleotide. Hybridization properties of these modified oligonucleotides were studied in a fluorescence-based competition assay in addition to conventional UV melting temperature analysis and compared with those of a previously prepared analogue featuring the modified nucleoside in the middle of the sequence. With the unpalladated phenylpyridine oligonucleotides, UV melting temperature qualitatively correlated with the ability to displace a strand from a double helix in the competition assay, decreasing in the order 5' > 3' > middle.
View Article and Find Full Text PDFMolecules
March 2019
Department of Chemistry, University of Turku, Vatselankatu 2, FIN-20014 Turku, Finland.
2'--Methylribo phosphorothioate oligonucleotides incorporating cyclopalladated benzylamine conjugate groups at their 5'-termini have been prepared and their ability to hybridize with a designated target sequence was assessed by conventional UV melting experiments. The oligonucleotides were further examined in splice-switching experiments in human cervical cancer (HeLa Luc/705), human liver (HuH7_705), and human osteosarcoma (U-2 OS_705) reporter cell lines. Melting temperatures of duplexes formed by the modified oligonucleotides were approximately 5 °C lower than melting temperatures of the respective unmodified duplexes.
View Article and Find Full Text PDFInt J Mol Sci
May 2018
Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland.
Short oligonucleotides with cyclopalladated benzylamine moieties at their 5'-termini have been prepared to test the possibility of conferring palladacyclic anticancer agents sequence-selectivity by conjugation with a guiding oligonucleotide. Hybridization of these oligonucleotides with natural counterparts was studied by UV and CD (circular dichroism) melting experiments in the absence and presence of a competing ligand (2-mercaptoethanol). Cyclopalladated benzylamine proved to be strongly stabilizing relative to unmetalated benzylamine and modestly stabilizing relative to an extra A•T base pair.
View Article and Find Full Text PDF