Palladacyclic Conjugate Group Promotes Hybridization of Short Oligonucleotides.

Int J Mol Sci

Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland.

Published: May 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Short oligonucleotides with cyclopalladated benzylamine moieties at their 5'-termini have been prepared to test the possibility of conferring palladacyclic anticancer agents sequence-selectivity by conjugation with a guiding oligonucleotide. Hybridization of these oligonucleotides with natural counterparts was studied by UV and CD (circular dichroism) melting experiments in the absence and presence of a competing ligand (2-mercaptoethanol). Cyclopalladated benzylamine proved to be strongly stabilizing relative to unmetalated benzylamine and modestly stabilizing relative to an extra A•T base pair. The stabilization was largely abolished in the presence of 2-mercaptoethanol, suggesting direct coordination of Pd(II) to a nucleobase of the complementary strand. In all cases, fidelity of Watson-Crick base pairing between the two strands was retained. Hybridization of the cyclopalladated oligonucleotides was characterized by relatively large negative enthalpy and entropy, consistent with stabilizing Pd(II) coordination partially offset by the entropic penalty of imposing conformational constraints on the flexible diethylene glycol linker between the oligonucleotide and the palladacyclic moiety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032164PMC
http://dx.doi.org/10.3390/ijms19061588DOI Listing

Publication Analysis

Top Keywords

short oligonucleotides
8
cyclopalladated benzylamine
8
stabilizing relative
8
palladacyclic conjugate
4
conjugate group
4
group promotes
4
promotes hybridization
4
hybridization short
4
oligonucleotides
4
oligonucleotides short
4

Similar Publications

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

Plasmids are commonly employed in the delivery of clustered regularly interspaced shortpalindromic repeats (CRISPR)/CRISPR-associated (Cas) components for genome editing. However, the absence of heritable plasmids in numerous organisms limits the development of CRISPR/Cas genome editing tools. Moreover, cumbersome procedures for plasmid construction and curing render genome editing time-consuming.

View Article and Find Full Text PDF

The development of therapeutic small interfering RNAs (siRNAs) has lately gained significant momentum due to their ability to silence genes in a highly specific manner. The main obstacle withholding the wider translation of siRNA-based drug modalities is their limited half-life and poor bioavailability, especially in extra-hepatic tissues. Consequently, various drug delivery systems (DDSs) have been developed to improve the delivery of siRNAs, including short delivery peptides called cell-penetrating peptides (CPPs).

View Article and Find Full Text PDF

The deficiency of DIP2C leads to congenital heart defects in patients with 10p15.3 microdeletion syndrome.

Gene

September 2025

Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Neck and Thoracic Surgery, Yingde People's Hospital, Yingde, Guangdong, China. Electronic add

Background: Recurrent 10p15.3 microdeletion syndrome is a rare multisystem disorder characterized by abnormal facial features, global developmental delay (DD)/intellectual disability (ID), short stature, hand/foot malformation, and congenital heart defects (CHDs). However, the specific genetic defects that contribute to the cardiac phenotype remain unclear.

View Article and Find Full Text PDF

Cyclic dinucleotides (CDNs) and other short oligonucleotides play fundamental roles in immune system activation in organisms ranging from bacteria to humans. In response, viruses use phosphodiesterase-mediated oligonucleotide cleavage for immune evasion, a strategy whose diversity has not yet been explored. We used a canonical 2H phosphodiesterase (2H PDE) structure-based search of prokaryotic and eukaryotic viral sequences to identify an exceptional diversity of 2H PDEs across the virome, including enzymes not detectable with sequence search methods alone.

View Article and Find Full Text PDF