Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The spatial organization of the genome is essential for its functions, including gene expression and chromosome segregation. Phase separation and loop extrusion have been proposed to underlie compartments and topologically associating domains, however, whether the fold of genomic DNA inside the nucleus is consistent with such mechanisms has been difficult to establish in situ. Here, we present a 3D DNA-tracing workflow that resolves genome architecture in single structurally well-preserved cells with nanometre resolution. Our findings reveal that genomic DNA generally behaves as a flexible random coil at the 100-kb scale. At CTCF sites however, we find Cohesin-dependent loops in a subset of cells, in variable conformations from the kilobase to megabase scale. The 3D-folds we measured in hundreds of single cells allowed us to formulate a computational model that explains how sparse and dynamic loops in single cells underlie the appearance of compact topological domains measured in cell populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276220PMC
http://dx.doi.org/10.1038/s41467-025-61689-yDOI Listing

Publication Analysis

Top Keywords

genomic dna
8
single cells
8
nanoscale dna
4
dna tracing
4
tracing non-denatured
4
non-denatured cells resolves
4
cells resolves cohesin-dependent
4
cohesin-dependent loop
4
loop architecture
4
architecture genome
4

Similar Publications

Comparative mitogenomics of the eulipotyphlan species (Mammalia, Eulipotyphla) provides novel insights into the molecular evolution of hibernation.

Mitochondrial DNA A DNA Mapp Seq Anal

September 2025

Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.

Hibernation is an elaborate response strategy employed by numerous mammals to survive in cold conditions that involves active suppression of metabolism. Despite the role of mitochondria as energy metabolism centers during hibernation, the adaptive and evolutionary mechanisms of mitochondrial genes in hibernating animals, like hedgehogs in eulipotyphlan species, are not yet fully understood. In this study, we sequenced and assembled mitochondrial genomes of the hibernating four-toed hedgehog () and the non-hibernating Asian house shrew ().

View Article and Find Full Text PDF

Modulating Placental Functionality in Preeclampsia With siRNA Nanocomplexes.

Hypertension

September 2025

Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu (Z.W.).

Background: Early-onset preeclampsia poses significant risks to maternal and fetal health, necessitating a deeper understanding of its molecular mechanisms and effective therapeutic strategies.

Methods: Utilizing data from genome-wide association study and Mendelian randomization analysis, we investigated the relationship between mitochondrial DNA copy number and preeclampsia. Transcriptome sequencing, in vitro experiments, and animal studies were conducted to explore the roles of SENP3 and SETD7 in preeclampsia pathogenesis.

View Article and Find Full Text PDF

While agriculture is essential for food security, the intensive use of pesticides in modern farming practices raises concerns on their impact, in particular from a One Health perspective. In 2024, Brazil approved 663 new pesticides, a 19% increase in comparison with 2023. The occupational exposure of rural workers is known to be associated with a range of health outcomes, including cancer.

View Article and Find Full Text PDF

G-quadruplexes (G4) are four-stranded nucleic acid structures formed within sequences containing repeated guanine tracts separated by intervening loop regions. Abundant in the human genome, they play crucial roles in transcription regulation and genome maintenance. Although theoretically capable to adopt 26 different folding topologies─primarily differing in loop arrangements─only 14 of these have been observed experimentally.

View Article and Find Full Text PDF

Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.

View Article and Find Full Text PDF