Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale: Immunoglobulins (Ig) protect against pathogens frequently implicated in COPD exacerbations. We previously demonstrated an association of low-normal serum IgA and IgG concentrations with prospective exacerbation risk, but responsible mechanisms are undefined. Here, we examined associations of lower respiratory tract bacterial diversity to Ig levels in serum and bronchoalveolar lavage (BAL) and to the memory phenotypes of blood and BAL B cells.

Methods: We analyzed data from phase I of SPIROMICS, an observational cohort study of smoking-related COPD. A subset of participants completed comprehensive research bronchoscopies, including analysis of BAL bacterial microbiota by 16 S rRNA gene (V4 region) sequencing and of blood and BAL B-cells by 12-color flow cytometry. In some participants, we also analyzed serum and BAL Ig levels by ELISA. We constructed linear regression models including either serum or BAL (albumin-corrected) Ig measurements as the independent variable and separate dependent variables, including B-cell subsets, BAL bacterial diversity metrics (Faith phylogenetic diversity, inverse Simpson, and richness indices), and clinical measures (FEV% predicted, risk of prospective exacerbations), adjusted by age, sex, race, educational attainment, smoking status, and use of inhaled corticosteroids.

Results: Serum IgG and IgA (n = 66 participants) were 1,486.1 ± 510.6 mg/dL [mean ± standard deviation (SD)] and 237.7 ± 131.6 mg/dL, respectively. Albumin-corrected BAL IgG and IgA (n = 117) were 0.03 ± 0.02 mg/dL and 0.01 ± 0.01 mg/dL, respectively. B-cells (n = 82) comprised 3.5 ± 3.0% of blood leukocytes. Serum IgA was associated with higher blood switched memory (IgD- CD27+) B-cell percentages (β 6.06, p = 0.01) and inversely associated with blood double-negative (IgD-CD27-) B-cell percentages (β - 9.96, p = 0.02). Available BAL microbiome data (n = 107) showed that reduced lung bacterial diversity associated with lower serum IgG, but not with serum IgA, BAL IgA, or BAL IgG concentrations. Neither BAL IgG nor IgA were associated with lung function or exacerbations.

Conclusions: These results demonstrate an association of low serum IgG with reduced lung bacterial diversity, a feature of dysbiosis that may predispose to exacerbation. Defining the role of Ig in specific anatomic compartments is relevant to designing vaccine strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275290PMC
http://dx.doi.org/10.1186/s12931-025-03310-wDOI Listing

Publication Analysis

Top Keywords

bacterial diversity
16
serum iga
12
bal
12
serum igg
12
igg iga
12
bal igg
12
serum
9
serum bronchoalveolar
8
memory phenotypes
8
igg concentrations
8

Similar Publications

For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".

View Article and Find Full Text PDF

Diverse biofilm-forming represent twelve novel species isolated from glaciers on the Tibetan Plateau.

Int J Syst Evol Microbiol

September 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.

The family , encompassing the genus and related taxa, comprises diverse Gram-negative, aerobic, rod-shaped bacteria found in varied habitats, including air, soil, water and glaciers. Recent genomic-based taxonomic revisions have reclassified some species into new genera, such as and , due to polyphyletic relationships within the family . Certain species are known for forming biofilms or functioning as aerobic anoxygenic phototrophic bacteria, traits that enhance resilience in extreme environments like the cryosphere.

View Article and Find Full Text PDF

Using BONCAT to dissect the proteome of persisters.

mSphere

September 2025

Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Leiden, the Netherlands.

Bacterial persisters are a subpopulation of cells that exhibit a transient non-susceptible phenotype in the presence of bactericidal antibiotic concentrations. This phenotype can lead to the survival and regrowth of bacteria after treatment, resulting in relapse of infections. It is also a contributing factor to antibacterial resistance.

View Article and Find Full Text PDF

Bacterial leaf streak (BLS), caused by pv. (), has recently emerged as a significant threat to wheat production in the Northern Great Plains region of the US. Deploying resistant cultivars is an economical and practical method of controlling BLS.

View Article and Find Full Text PDF

Unlabelled: The genus includes opportunistic pathogens inhabiting engineered aquatic ecosystems, where managing their presence and abundance is crucial for public health. In these environments, interact positively or negatively with multiple members of the microbial communities. Here, we identified bacteria and compounds with -antagonistic properties.

View Article and Find Full Text PDF