A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MetaGeno: a chromosome-wise multi-task genomic framework for ischaemic stroke risk prediction. | LitMetric

MetaGeno: a chromosome-wise multi-task genomic framework for ischaemic stroke risk prediction.

Brief Bioinform

Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo 2007, New South Wales, Australia.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current genome-wide association studies provide valuable insights into the genetic basis of ischaemic stroke (IS) risk. However, polygenic risk scores, the most widely used method for genetic risk prediction, have notable limitations due to their linear nature and inability to capture complex, nonlinear interactions among genetic variants. While deep neural networks offer advantages in modeling these complex relationships, the multifactorial nature of IS and the influence of modifiable risk factors present additional challenges for genetic risk prediction. To address these challenges, we propose a Chromosome-wise Multi-task Genomic (MetaGeno) framework that utilizes genetic data from IS and five related diseases. The framework includes a chromosome-based embedding layer to model local and global interactions among adjacent variants, enabling a biologically informed approach. Incorporating multi-disease learning further enhances predictive accuracy by leveraging shared genetic information. Among various sequential models tested, the Transformer demonstrated superior performance, and outperformed other machine learning models and PRS baselines, achieving an AUROC of 0.809 on the UK Biobank dataset. Risk stratification identified a two-fold increased stroke risk (HR, 2.14; 95% CI: 1.81-2.46) in the top 1% risk group, with a nearly five-fold increase in those with modifiable risk factors such as atrial fibrillation and hypertension. Finally, the model was validated on the diverse All of Us dataset (AUROC = 0.764), highlighting ancestry and population differences while demonstrating effective generalization. This study introduces a predictive framework that identifies high-risk individuals and informs targeted prevention strategies, offering potential as a clinical decision-support tool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271575PMC
http://dx.doi.org/10.1093/bib/bbaf348DOI Listing

Publication Analysis

Top Keywords

stroke risk
12
risk prediction
12
risk
10
chromosome-wise multi-task
8
multi-task genomic
8
ischaemic stroke
8
genetic risk
8
modifiable risk
8
risk factors
8
genetic
6

Similar Publications