Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cognitive, social behavior, speech, and motor skills are known challenges for people with trisomy 21/Down syndrome (DS), but the precise mechanisms that lead to these impactful changes have not yet been described. Data from human and mouse model fetal brains indicate that alterations in prenatal neurogenesis might account for the neurological phenotypes that manifest after birth. Here, we evaluated key features of cortical neurogenesis in the humanized mouse model of DS (TcMAC21 of undetermined sex) to test whether and how the presence of the human HSA21q transchromosome impacts cortical development. Brain growth measurements throughout the second half of gestation and at several periods of postnatal development show overall that the TcMAC21 brain phenotype is less severe than in other DS mouse models that have less genetic similarity to humans with DS. However, despite the lack of gross changes in brain growth, we uncovered a significant temporally limited neurogenesis defect at midgestation that correlates with long-lasting effects on neuronal dispersion and neuronal function in the neocortex. Using Cre/Lox-mediated genetic fate mapping, we discovered a transient reduction in neocortical basal intermediate progenitor cells (bIPCs) and that bIPC neuronal progeny are underrepresented in the superficial layers of the neocortex. This change in neuronal production is associated with cortical activity changes after birth. Altogether, our data isolate the cell types associated with a very specific temporal change in cortical formation that, due to the high levels of excitability of bIPC-derived neurons, creates lasting effects on network activity and circuit development in trisomic brains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369931PMC
http://dx.doi.org/10.1523/JNEUROSCI.0040-25.2025DOI Listing

Publication Analysis

Top Keywords

mouse model
12
basal intermediate
8
brain growth
8
disrupted neurogenesis
4
neurogenesis basal
4
intermediate precursor
4
precursor cells
4
cells alters
4
alters postnatal
4
postnatal neocortex
4

Similar Publications

Background: Laboratory animal veterinarians play a crucial role as a bridge between the ethical use of laboratory animals and the advancement of scientific and medical knowledge in biomedical research. They alleviate pain and reduce distress through veterinary care of laboratory animals. Additionally, they enhance animal welfare by creating environments that mimic natural habitats through environmental enrichment and social associations.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

Transcriptional condensates enrich phosphorylated PRMT2 to stimulate H3R8me2a deposition and hypoxic response in glioblastoma.

Sci China Life Sci

September 2025

State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora

Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.

View Article and Find Full Text PDF

Background: Activin A/Smad signaling plays an important role in promoting cancer stemness and chemoresistance in pancreatic ductal adenocarcinoma (PDAC), however the precise regulation on the termination of this pathway has not been fully understood.

Methods: LncRNA SLC7A11-AS1 interacting proteins were identified through RNA pull-down followed by LC-MS/MS. The protein interaction was analyzed by co-immunoprecipitation.

View Article and Find Full Text PDF

Manipulating Zika virus RNA tertiary structure for developing tissue-specific attenuated vaccines.

EMBO Mol Med

September 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, 100071, Beijing, China.

Traditional live attenuated vaccines (LAVs) are typically developed through serial passaging or genetic engineering to introduce specific mutations or deletions. While viral RNA secondary or tertiary structures have been well-documented for their multiple functions, including binding with specific host proteins, their potential for LAV design remains largely unexplored. Herein, using Zika virus (ZIKV) as a model, we demonstrate that targeted disruption of the primary sequence or tertiary structure of a specific viral RNA element responsible for Musashi-1 (MSI1) binding leads to a tissue-specific attenuation phenotype in multiple animal models.

View Article and Find Full Text PDF