Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Striatal spiny-projection neurons (SPNs) integrate glutamatergic inputs from the motor cortex and thalamus with neuromodulatory signals to regulate motor output. Ca imaging has demonstrated that spatially overlapping ensembles of direct and indirect pathway SPNs (dSPNs, iSPNs) are co-active during spontaneous movement. This co-activity is statistically greater among nearby neurons, correlates with behavioral state, and changes in an SPN-type-specific manner under pathological conditions. How this co-activity arises and whether is important for movement are not well understood. Co-activity likely arises from shared excitatory inputs, the strength of which are scaled by well-characterized mechanisms of synaptic plasticity. Here, we show that the Group I metabotropic glutamate receptor 5 (mGluR5), which regulates the strength of corticostriatal synapses, is a key mediator of behaviorally relevant SPN co-activity. Pharmacological modulation of mGluR5 signaling bidirectionally altered movement and co-activity, but not the absolute level of activity in dSPNs. Targeted deletion of mGluR5 in dSPNs recapitulated the effects on spatiotemporal neural dynamics and movement, consistent with a striatum-specific effect of mGluR5 modulation. Targeted deletion of mGluR5 also produced changes in the synaptic properties of dSPNs. Separate from any effects on overall activity, our results show that excitatory synaptic modulation influences motor function by coordinating the spatial co-activation of dSPNs .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265698PMC
http://dx.doi.org/10.1101/2023.12.20.572676DOI Listing

Publication Analysis

Top Keywords

motor output
8
movement co-activity
8
co-activity arises
8
targeted deletion
8
deletion mglur5
8
dspns
5
co-activity
5
mglur5
5
synaptic
4
synaptic mechanisms
4

Similar Publications

This study investigated the correlation between the strength of correlated effective neural drive (END) to the antagonistic muscles and the fluctuations in neural/electrical and mechanical output around the joint during steady co-contraction, and whether the correlated END strength estimated from conventional surface EMG is correlated with that determined from motor unit (MU) discharges. Fourteen young male participants performed isometric steady co-contractions with their medial gastrocnemius and tibialis anterior muscles at 10% of maximal EMG while sitting. Correlated END strength was quantified as the maximum value of the cross-correlation function between the conventional surface EMG signals and between MU discharges decomposed from high-density surface EMG of each muscle.

View Article and Find Full Text PDF

The present protocol evaluates the relative impact of visual and vestibular inputs during roll plane rotations using optokinetic, vestibular, and combined visuovestibular stimulations. Subjects underwent isolated visual rotations, whole-body vestibular rotations in darkness, and visuovestibular stimulations combining static visual scenes with head rotations. Dynamic and static eye movement gains, absolute amplitudes, velocities, and accelerations were measured alongside perceptual responses.

View Article and Find Full Text PDF

Anatomical pathways and functional implications of the rodent auditory system-basal ganglia interconnectivity.

Front Behav Neurosci

August 2025

Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Sound influences motor functions and sound perception is conversely modulated by locomotion. Accumulating evidence supports an interconnection between the auditory system and the basal ganglia (BG), which has functional implications on the interaction between the two systems. Substantial evidence now supports auditory cortex and auditory thalamus inputs to the tri-laminar region of the tail of the striatum (tTS) in rodents.

View Article and Find Full Text PDF

The multi-user motor imagery brain-computer interface (BCI) is a new approach that uses information from multiple users to improve decision-making and social interaction. Although researchers have shown interest in this field, the current decoding methods are limited to basic approaches like linear averaging or feature integration. They ignored accurately assessing the coupling relationship features, which results in incomplete extraction of multi-source information.

View Article and Find Full Text PDF

Background: This study examined the influence of two aerobic fitness indices (VO2max and [%4mM] i.e. the relative intensity [%VO2max] corresponding to a blood lactate concentration of 4 mmol·L) on the recovery of power output during repeated sprinting.

View Article and Find Full Text PDF