Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motivation: Protein folding is a dynamic process during which a protein's amino acid sequence undergoes a series of 3-dimensional (3D) conformational changes en route to reaching a native 3D structure; the resulting 3D structural conformations are called folding intermediates. While data on native 3D structures are abundant, data on 3D structures of non-native intermediates remain sparse, due to limitations of current technologies for experimental determination of 3D structures. Yet, analyzing folding intermediates is crucial for understanding folding dynamics and misfolding-related diseases. Hence, we search the literature for available (experimentally and computationally obtained) 3D structural data on folding intermediates, organizing the data in a centralized resource. Additionally, we assess whether existing methods, designed for predicting native structures, can also be utilized to predict structures of non-native intermediates.

Results: Our literature search reveals six studies that provide 3D structural data on folding intermediates (two for post-translational and four for co-translational folding), each focused on a single protein, with 2-4 intermediates. Our assessment shows that an established method for predicting native structures, AlphaFold2, does not perform well for non-native intermediates in the context of co-translational folding; a recent study on post-translational folding concluded the same for even more existing methods. Yet, we identify in the literature recent pioneering methods designed explicitly to predict 3D structures of folding intermediates by incorporating intrinsic biophysical characteristics of folding dynamics, which show promise. This study assesses the current landscape and future directions of the field of 3D structural analysis of protein folding dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265586PMC

Publication Analysis

Top Keywords

folding intermediates
20
folding dynamics
16
folding
13
structural data
12
protein folding
12
native structures
12
intermediates
8
structures non-native
8
non-native intermediates
8
data folding
8

Similar Publications

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.

View Article and Find Full Text PDF

Protein folding remains a formidable challenge despite significant advances, particularly in sequence-to-structure prediction. Accurately capturing thermodynamics and intermediates via simulations demands overcoming time scale limitations, making effective collective variable (CV) design for enhanced sampling crucial. Here, we introduce a strategy to automatically construct complementary, bioinspired CVs.

View Article and Find Full Text PDF

Significant enhancement of photoproduced reactive intermediates in liquid-like region in frozen surface water for micropollutant degradation.

Water Res

September 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China. Electronic address:

Freezing enhancing the photochemistry of dissolved organic matter (DOM), yet the mechanism of reactive intermediate (RIs) generation influenced by DOM property and structure remain elusive. Here, we demonstrate that freezing induces exceptional amplification of RIs, with steady-state concentrations in ice (-10 °C) surpassing aqueous solutions by 5-41 times. Laser scanning confocal microscopy first visualized cryo-concentration of DOM and RIs in liquid-like regions (LLR).

View Article and Find Full Text PDF

Cotranslational protein folding follows a distinct pathway shaped by the vectorial emergence of the peptide and spatial constraints of the ribosome exit tunnel. Variations in translation rhythm can cause misfolding linked to disease; however, predicting cotranslational folding pathways remains challenging. Here, we computationally predict and experimentally validate a vectorial hierarchy of folding resolved at the atomistic level, where early intermediates are stabilized through non-native hydrophobic interactions before rearranging into the native-like fold.

View Article and Find Full Text PDF

Membrane Interactions Drive Hydrogen-Bond Dynamics in the pH-Low Insertion Peptide (pHLIP).

J Phys Chem Lett

September 2025

Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States.

The pH Low Insertion Peptide (pHLIP), a cell-penetrating peptide, presents an ideal model to study peptide-membrane interactions across a range of conformational states. The folded, solvent-exposed unfolded, and membrane-inserted states of pHLIP have been well-characterized, but the intermediate structures remain poorly understood. Studies have focused on understanding folding and membrane interactions; however, there is a relation between the environment, membrane interactions, and local picosecond dynamics that has not been characterized.

View Article and Find Full Text PDF