98%
921
2 minutes
20
Background: Depression is closely associated with abnormalities in brain function. Traditional static functional connectivity analyses offer limited insight into the temporal variability of brain activity. Recent advances in dynamic analyses enable a deeper understanding of how depression relates to temporal fluctuations in brain activity.
Methods: This study utilized a large resting-state functional magnetic resonance imaging dataset ( = 696) to examine the association between brain dynamics and depression. Two complementary approaches were employed. Hidden Markov modeling (HMM) was used to identify discrete brain states and quantify their temporal switching patterns; temporal variability was computed within and between large-scale functional networks to capture time-varying fluctuations in functional connectivity.
Results: Depression scores were positively associated with switching rate and negatively associated with maximum fractional occupancy. Furthermore, depression scores were significantly associated with greater temporal variability both within and between networks, with particularly strong effects observed in the default mode network, ventral attention network, and frontoparietal network. Together, these findings suggest that individuals with higher depression scores exhibit more unstable brain dynamics.
Conclusion: Our findings reveal that individuals with higher depression levels exhibit greater instability in brain state transitions and increased temporal variability in functional connectivity across large-scale networks. This instability in brain dynamics may contribute to difficulties in emotion regulation and cognitive control. By capturing whole-brain temporal patterns, this study offers a novel perspective on the neural basis of depression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315643 | PMC |
http://dx.doi.org/10.1017/S0033291725101001 | DOI Listing |
J Neuroeng Rehabil
September 2025
Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076, Tübingen, Germany.
Innovative technology allows for personalization of stimulation frequency in dual-site deep brain stimulation (DBS), offering promise for challenging symptoms in advanced Parkinson's disease (PD), particularly freezing of gait (FoG). Early results suggest that combining standard subthalamic nucleus (STN) stimulation with substantia nigra pars reticulata (SNr) stimulation may improve FoG outcomes. However, patient response and the optimal SNr stimulation frequency vary.
View Article and Find Full Text PDFAerosp Med Hum Perform
September 2025
Introduction: This study investigated pilot cognitive engagement patterns across diverse flight conditions using electroencephalography (EEG)-based measurements in a high-fidelity rotary-wing simulation environment.
Methods: A total of 8 experienced U.S.
Biol Lett
September 2025
Department of Biology and Environmental Science, Linnaeus University, Kalmar, Kalmar County, Sweden.
Theory, manipulation experiments and observational studies on biodiversity and ecosystem functioning largely concur that higher intraspecific diversity may increase the overall productivity of populations, buffer against environmental change and stabilize long-term productivity. However, evidence comes primarily from small and short-lived organisms. We tested for effects of genetic diversity on variation in forest growth by combining long-term data on annual individual growth rate (basal area increment (BAI)) with estimates of intrapopulation genetic variation (based on RAD-seq SNPs) for 18 natural pedunculate oak populations.
View Article and Find Full Text PDFJ Environ Manage
September 2025
University of Maryland Center for Environmental Science, Annapolis, MD, USA.
River water quality degradation is a prevailing problem in coastal China with intensifying human-nature interaction. However, the spatial and temporal dynamics of water quality and their drivers remain poorly understood. In this study, we developed an analytical framework integrating self-organizing mapping (SOM) with partial least squares structural equation models (PLS-SEMs) to analyze the patterns and drivers of river water quality at 49 stations from 2021 to 2023 in Fujian Province, a coastal region in southeastern China.
View Article and Find Full Text PDFJ Refract Surg
September 2025
American University of Beirut Ophthalmology Department, Beirut, Lebanon.
Purpose: To investigate eye movement dynamics during excimer laser ablation, specifically femtosecond laser-assisted in situ keratomileusis (FS-LASIK), and compare movement patterns between the right eye (always operated on first) and the left eye (operated on second), analyzing direction, magnitude, and temporal changes.
Methods: A retrospective analysis was conducted on 92 eyes from 46 patients who underwent FS-LASIK with the SCHWIND AMARIS system (SCHWIND eye-tech-solutions). Eye-tracking data were collected to record horizontal and vertical directional movements; variability was assessed using standardized metrics.