98%
921
2 minutes
20
Objective: This study assesses the effectiveness of super-resolution deep learning reconstruction (SR-DLR), conventional deep learning reconstruction (C-DLR), and hybrid iterative reconstruction (HIR) in enhancing image quality and diagnostic performance for pediatric congenital heart disease (CHD) in CT angiography (CCTA).
Materials And Methods: A total of 91 pediatric patients aged 1-10 years, suspected of having CHD, were consecutively enrolled for CCTA under free-breathing conditions. Reconstructions were performed using SR-DLR, C-DLR, and HIR algorithms. Objective metrics-standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR)-were quantified. Two radiologists provided blinded subjective image quality evaluations.
Results: The full width at half maximum of lesions was significantly larger on SR-DLR (9.50 ± 6.44 mm) than on C-DLR (9.08 ± 6.23 mm; p < 0.001) and HIR (8.98 ± 6.37 mm; p < 0.001). SR-DLR exhibited superior performance with significantly reduced SD and increased SNR and CNR, particularly in the left ventricle, left atrium, and right ventricle regions (p < 0.05). Subjective evaluations favored SR-DLR over C-DLR and HIR (p < 0.05). The accuracy (99.12%), sensitivity (99.07%), and negative predictive value (85.71%) of SR-DLR were the highest, significantly exceeding those of C-DLR (+7.01%, +7.40%, and +45.71%) and HIR (+20.17%, +21.29%, and +65.71%), with statistically significant differences (p < 0.05 and p < 0.001). In the detection of atrial septal defects (ASDs) and ventricular septal defects (VSDs), SR-DLR demonstrated significantly higher sensitivity compared to C-DLR (+8.96% and +9.09%) and HIR (+20.90% and +36.36%). For multi-perforated ASDs and VSDs, SR-DLR's sensitivity reached 85.71% and 100%, far surpassing C-DLR and HIR.
Conclusion: SR-DLR significantly reduces image noise and enhances resolution, improving the diagnostic visualization of CHD structures in pediatric patients. It outperforms existing algorithms in detecting small lesions, achieving diagnostic accuracy close to that of ultrasound.
Key Points: Question Pediatric cardiac computed tomography angiography (CCTA) often fails to adequately visualize intracardiac structures, creating diagnostic challenges for CHD, particularly complex multi-perforated atrioventricular defects. Findings SR-DLR markedly improves image quality and diagnostic accuracy, enabling detailed visualization and precise detection of small congenital lesions. Clinical relevance SR-DLR enhances the diagnostic confidence and accuracy of CCTA in pediatric CHD, reducing missed diagnoses and improving the characterization of complex intracardiac anomalies, thus supporting better clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-025-11800-0 | DOI Listing |
J Eval Clin Pract
September 2025
Department of Orthopedics and Traumatology, Medical Faculty, University of Health Sciences, Antalya, Turkey.
Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.
Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.
Dermatitis
September 2025
From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.
Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.
View Article and Find Full Text PDFElectromagn Biol Med
September 2025
Computer Science and Business Systems, Sri Krishna College of Engineering and Technology, Coimbatore, India.
Subject-independent emotion detection using EEG (Electroencephalography) using Vibrational Mode Decomposition and deep learning is made possible by the scarcity of labelled EEG datasets encompassing a variety of emotions. Labelled EEG data collection over a wide range of emotional states from a broad and varied population is challenging and resource-intensive. As a result, models trained on small or biased datasets may fail to generalize well to unknown individuals or emotional states, resulting in lower accuracy and robustness in real-world applications.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
Objectives: We propose a myocardial infarction (MI) detection and localization model for improving the diagnostic accuracy for MI to provide assistance to clinical decision-making.
Methods: The proposed model was constructed based on multi-scale field residual blocks fusion modified channel attention (MSF-RB-MCA). The model utilizes lead II electrocardiogram (ECG) signals to detect and localize MI, and extracts different levels of feature information through the multi-scale field residual block.
Ren Fail
December 2025
Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Large language models (LLMs) represent a transformative advance in artificial intelligence, with growing potential to impact chronic kidney disease (CKD) management. CKD is a complex, highly prevalent condition requiring multifaceted care and substantial patient engagement. Recent developments in LLMs-including conversational AI, multimodal integration, and autonomous agents-offer novel opportunities to enhance patient education, streamline clinical documentation, and support decision-making across nephrology practice.
View Article and Find Full Text PDF