Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RAD51C is a tumor suppressor gene with over 285 variants of unknown significance (VUS) found in primary ovarian tumors. RAD51C is a paralog of the recombinase RAD51, and it forms complexes with other paralogs to regulate RAD51 activity. We screened 27 ovarian cancer-derived RAD51C VUS to identify those that affect the assembly of functional tetrameric RAD51B-C-D-XRCC2 (BCDX2) complex. With yeast 3-hybrid and biochemical analyses, we identify a mutation cluster of the RAD51C Walker B region affecting protein interactions with other RAD51 paralogs. By further analyzing these variants for homologous recombination (HR), replication fork regression, DNA binding and ATPase activity, and RAD51 filament formation, we identified separation-of-function alleles that uncouple RAD51C distinct enzymatic activities with HR and replication. Thus, our analysis of RAD51C identifies additional VUS with functional defects, which will aid in pathogenicity classification and inform future strategies to treat individuals harboring RAD51C loss-of-function alleles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267511PMC
http://dx.doi.org/10.1038/s41467-025-61283-2DOI Listing

Publication Analysis

Top Keywords

homologous recombination
8
rad51c
7
comprehensive rad51c
4
rad51c ovarian
4
ovarian cancer
4
cancer variant
4
variant analysis
4
analysis uncouples
4
uncouples homologous
4
recombination replicative
4

Similar Publications

Resistance to platinum-based drugs and PARP inhibitors (PARPi) is the leading cause of treatment failure in epithelial ovarian cancer (EOC). This study aimed to identify resistance mechanisms shared by both. Using bioinformatic analyses, EOC tissues, primary tumor cells and organoids, and chemoresistant cell lines, we identified lymphoid enhancer-binding factor 1 (LEF1) as a candidate, whose expression was increased in both platinum-resistant and PARPi-resistant tumors.

View Article and Find Full Text PDF

Background: Homologous recombination deficiency (HRD)-related genetic mutations in ovarian high-grade serous carcinoma (HGSC) are known to be ethnic specific. Here, we assessed the diagnostic performance of HRD and its clinical implication in Korean HGSC patients using the SOPHiA DDM HRD Solution.

Methods: Sixty-three ovarian cancer (OC) patients were enrolled, including 53 with HGSC and 10 with other subtypes.

View Article and Find Full Text PDF

The RecBC complex protects single-stranded DNA gaps during lesion bypass.

Proc Natl Acad Sci U S A

September 2025

Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Inserm, Institut Paoli-Calmettes, Aix Marseille Université, Marseille 13009, France.

Following encounter with an unrepaired DNA lesion, replication is halted and can restart downstream of the lesion leading to the formation of a single-stranded DNA (ssDNA) gap. To complete replication, this ssDNA gap is filled in by one of the two lesion tolerance pathways: the error-prone Translesion Synthesis (TLS) or the error-free Homology Directed Gap Repair (HDGR). In the present work, we evidence a role for the RecBC complex distinct from its canonical function in homologous recombination at DNA double strand breaks.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with limited treatment options and poor prognosis. Recent advances in cancer genomic analysis enable the identification of actionable gene alterations, opening new opportunities for personalized therapy. Among these, homologous recombination DNA repair (HRR) gene alterations are associated with distinct biological behavior, favorable prognosis, and increased sensitivity to platinum-based chemotherapy.

View Article and Find Full Text PDF

The Brucella abortus A19 attenuated live vaccine poses potential infection risks during practical applications and interferes with serological diagnostics, thereby affecting quarantine measures and the establishment of disease-free zones. Consequently, this study aimed to reduce its potential virulence, enhance its protective efficacy and differentiate it from wild-type strains by knocking out the immunosuppressive virulence gene btpB in the A19 strain. Using homologous recombination, we successfully obtained the A19ΔBtpB deletion strain.

View Article and Find Full Text PDF