Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many subtypes of bone and soft tissue tumours harbour specific chromosome translocations leading to chimeric fusion genes. The identification of these specific fusion genes is the basis of molecular diagnoses in such tumours. Break-apart FISH is a robust method that is commonly used to identify these translocations and provide diagnostic support to histological interpretations. The signal patterns of the break-apart probes are usually easily interpreted. However, some cases show abnormal signal patterns leading to equivocal and challenging interpretation. The incidence of these abnormal patterns is largely unknown. Using a retrospective cohort we explored the incidence of abnormal signal patterns across common bone and soft tissue tumour types to raise awareness of this occurrence and to aid in the interpretation. In total, 1,087 bone and soft tissue tumours tested by break-apart probes were examined. The abnormal signal patterns were classified as deletion, additional copy and amplification, which were found at highest frequency in low-grade fibromyxoid sarcoma (32%, 6/19), and at moderate frequencies in those from alveolar rhabdomyosarcoma (10%, 9/94), nodular fasciitis (9%, 18/209), synovial sarcoma (8%, 17/207) and Ewing sarcoma/round cell sarcoma with EWSR1-non-ETS fusions (6%, 29/497). The lowest frequency was found in clear cell sarcoma (1%, 1/61). Despite the equivocal results from the abnormal signal patterns, the specific fusion genes were confirmed by orthogonal molecular techniques such as FISH with fusion probes, RT-PCR or next-generation sequencing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259478PMC
http://dx.doi.org/10.3389/pore.2025.1612142DOI Listing

Publication Analysis

Top Keywords

signal patterns
24
abnormal signal
20
bone soft
16
soft tissue
16
tissue tumours
12
fusion genes
12
patterns break-apart
8
break-apart fish
8
specific fusion
8
break-apart probes
8

Similar Publications

The MET receptor tyrosine kinase is a pivotal regulator of cellular survival, motility, and proliferation. Mutations leading to skipping of exon 14 (METΔex14) within the juxtamembrane domain of MET impair receptor degradation and prolong oncogenic signaling, contributing significantly to tumor progression across multiple cancer types. METΔex14 mutations are associated with aggressive clinical behavior, therapeutic resistance, and poor outcomes.

View Article and Find Full Text PDF

Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF

Background: We conducted a transcriptomic analysis to examine cerebellar transcriptional changes in a mouse model of chronic intermittent alcohol exposure.

Methods: We established a mouse model of chronic intermittent alcohol exposure and conducted a cerebellar transcriptomic analysis. After identifying differentially expressed genes, we analyzed pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology.

View Article and Find Full Text PDF

In this paper, we propose a novel framework, Combo, for harmonious co-speech holistic 3D human motion generation and efficient customizable adaption. In particular, we identify that one fundamental challenge as the multiple-input-multiple-output (MIMO) nature of the generative model of interest. More concretely, on the input end, the model typically consumes both speech signals and character guidance (e.

View Article and Find Full Text PDF