98%
921
2 minutes
20
Nowadays, breast cancer is one of the leading causes of death among women. This highlights the need for precise X-ray image analysis in the medical and imaging fields. In this study, we present an advanced perceptual deep learning framework that extracts key features from large X-ray datasets, mimicking human visual perception. We begin by using a large dataset of breast cancer images and apply the BING objectness measure to identify relevant visual and semantic patches. To manage the large number of object-aware patches, we propose a new ranking technique in the weak annotation context. This technique identifies the patches that are most aligned with human visual judgment. These key patches are then aggregated to extract meaningful features from each image. We leverage these features to train a multi-class SVM classifier, which categorizes the images into various breast cancer stages. The effectiveness of our deep learning model is demonstrated through extensive comparative analysis and visual examples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263836 | PMC |
http://dx.doi.org/10.1038/s41598-025-10058-2 | DOI Listing |
JMIR Hum Factors
September 2025
KK Women's and Children's Hospital, Singapore, Singapore.
Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.
View Article and Find Full Text PDFJAMA Surg
September 2025
Department of Population Health, NYU Grossman School of Medicine, New York, New York.
Int J Surg
September 2025
Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People's Republic of China.
Med Oncol
September 2025
Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, Kolkata, India.
Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).
View Article and Find Full Text PDF