98%
921
2 minutes
20
The fundamentals of switchable actinide-ligand binding modes are central for designing new platforms for addressing challenges associated with, for example, isolation of pure radiological daughters for nuclear medicine or methods for efficient nuclear stockpile recycling. This study is the first to report actinide binding modes controlled by an external stimulus photochromic moieties, realized through probing thermodynamics and kinetics aspects, including changes in photoswitch isomerization constants upon metal coordination and enthalpies associated with the synergistic actinide-switch photochromic processes. A comprehensive analysis of the presented concept was executed through evaluation of data acquired through a multivariate strategy involving isothermal titration calorimetry, crystallography, spectroscopy, and theoretical modeling on the example of actinide-containing compounds based on thorium(iv)-, and uranium(iv, vi), as well as transuranic elements such as plutonium(iv) in solution and within a metal-organic framework (MOF) matrix for the first time. Overall, the presented concept could usher in an alternative direction in stimuli-responsive actinide-based platforms that could be adapted to confront current and upcoming challenges in f-block chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12242833 | PMC |
http://dx.doi.org/10.1039/d5sc03171k | DOI Listing |
FEBS Lett
September 2025
Laboratory of Molecular Diagnostics and Biotechnology, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus.
Genetic variants of various cytochrome P450 (CYP) enzymes significantly impact pharmacokinetics. The highly polymorphic hepatic CYP2C9 metabolizes ~ 15% of clinically used drugs. This study aimed to characterize the ligand-binding properties of the understudied CYP2C9.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan.
Desorption processes of HO molecules from AlO(HO) ( = 3, 5, 7) and AlO(HO)H ( = 4, 6, 8) clusters were investigated using gas-phase thermal desorption spectrometry to evaluate the HO storage capacity and mechanisms of aluminum oxide clusters. The clusters stored approximately 10 HO molecules at ∼300 K, depending on the size (), and released them upon heating. Even after heating to ∼1000 K, 2-4 HO molecules remained bound.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.
View Article and Find Full Text PDFElectromagn Biol Med
September 2025
Laboratory of Biophysics of Sub-Cellular Structures, Scientific-Research Institute of Biology, Chair of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia.
Effect of millimeter range electromagnetic waves (MM EMW) with the frequency 51.8 GHz on the interaction of DNA-specific ligands-intercalators acridine orange (AO) and methylene blue (MB) with bovine serum albumin (BSA) has been studied. The measurements were implemented by the spectroscopic methods that open new opportunities for such goals.
View Article and Find Full Text PDFChemistry
September 2025
International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
Alzheimer's disease (AD) is a neurodegenerative disease characterized by β-amyloid (Aβ) deposition, imposing significant social and economic burdens globally. Despite extensive efforts have been devoted to developing fluorescent probes for Aβ imaging, further improving the luminescent efficiency of prevailing probes still remains a significant challenge. Herein, we investigated the inner mechanism of constructing high-efficient Aβ probes via a structural cyclization strategy.
View Article and Find Full Text PDF