98%
921
2 minutes
20
3D tracking and localization of particles, typically fluorescently labeled biomolecules, provides a direct means of monitoring cellular transport and communication. However, sample-induced wavefront distortions of emitted fluorescent light as it passes through the sample and onto the detector often yield point spread function (PSF) aberrations, presenting an important challenge to 3D particle tracking using pre-calibrated PSFs. PSF calibration is typically performed outside cellular samples, ignoring sample-induced aberrations, which can result in localization errors on the order of tens to hundreds of nanometers, ultimately compromising sub-diffraction limited tracking. In practice, correcting sample-induced aberrations currently requires sample-specific hardware adjustments, such as adaptive optics. Yet, information on sample-induced aberrations and PSF shape can be directly decoded from data collected using a 3D imaging setup. To this end, we propose a framework for simultaneous particle tracking, pupil function learning, and PSF reconstruction directly from the input data themselves. To accomplish this, we operate within a Bayesian paradigm, placing continuous 2D priors on all possible pupil phase and amplitudes warranted by the data without limiting ourselves to a finite Zernike set-thereby allowing capture of intricate pupil phase details. We benchmark our framework using a wide range of synthetic and experimental data from static to diffusing particles, and generalize to multiple diffusing particles with overlapping PSFs. Further, as a result of simultaneous particle tracking, phase retrieval, and PSF reconstruction, we retrieve the pupil phase with errors smaller than 10% under a range of realistic scenarios, while restoring sub-diffraction limited localization precisions of 10-25 nm and 20-50 nm in lateral and axial directions, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247744 | PMC |
http://dx.doi.org/10.1101/2025.05.02.651986 | DOI Listing |
J R Soc Interface
September 2025
Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, Île-de-France, France.
A number of techniques have been developed to measure the three-dimensional trajectories of protists, which require special experimental set-ups, such as a pair of orthogonal cameras. On the other hand, machine learning techniques have been used to estimate the vertical position of spherical particles from the defocus pattern, but they require the acquisition of a labelled dataset with finely spaced vertical positions. Here, we describe a simple way to make a dataset of images labelled with vertical position from a single 5 min movie, based on a tilted slide set-up.
View Article and Find Full Text PDFBioinspir Biomim
September 2025
Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts, 02747-2300, UNITED STATES.
Harbor seals possess a remarkable ability to detect hydrodynamic footprints left by moving objects, even long after the objects have passed, through interactions between wake flows and their uniquely shaped whiskers. While the flow-induced vibration (FIV) of harbor seal whisker models has been extensively studied, their response to unsteady wakes generated by upstream moving bodies remains poorly understood. This study investigates the wake-induced vibration (WIV) of a flexibly mounted harbor seal-inspired whisker positioned downstream of a forced-oscillating circular cylinder, simulating the hydrodynamic footprint of a moving object.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany.
Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).
View Article and Find Full Text PDFEur J Dent
September 2025
Doctoral Program, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia.
Although platelet-rich plasma (PRP) has demonstrated considerable regenerative potential in regenerative endodontic treatment, its clinical efficacy may be limited by the rapid degradation of its bioactive components, leading to inconsistent outcomes. To overcome this challenge, the present study explores the use of nano-sized exosomes derived from PRP-a novel designated as PRP exosomes (PRP-Exo)-as a more stable and targeted biomolecular delivery system to promote odontogenic differentiation within the dentin-pulp complex. The primary objective is to investigate the expression of key odontogenic markers, transforming growth factor-β1 (TGF-β1) and Dentin Sialophosphoprotein (DSPP), in human dental pulp stem cells (hDPSCs) following PRP-Exo treatment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.
The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.
View Article and Find Full Text PDF