Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cardiovascular diseases are responsible for a large number of severe disability cases and deaths worldwide. Strong research in this field has been extensively carried out, in particular for the associated complications, such as the occlusion of small-diameter (<6 mm) vessels. Accordingly, in the present research, two random copolyesters of poly(butylene 2,5-furandicarboxylate) (PBF) and poly(butylene isophthalate) (PBI), were successfully synthesized via two-step melt polycondensation and were thoroughly characterized from molecular, thermal, and mechanical perspectives. The copolymeric films displayed a peculiar thermal behavior, being easily processable in the form of films, although amorphous, with T close to room temperature. Their thermal stability was high in all cases, and from the mechanical point of view, the materials exhibited a high ultimate strength, together with values of elastic moduli tunable with the chemical composition. The long-term stability of these materials under physiological conditions was also demonstrated. Cytotoxicity was assessed using a direct contact assay with human umbilical vein endothelial cells (HUVECs). In addition, hemocompatibility was tested by evaluating the adhesion of blood components (such as the adsorption of human platelets and fibrinogen). As a result, a proper chemical design and, in turn, both the solid-state and functional properties, are pivotal in regulating cell behavior and opening new frontiers in the tissue engineering of soft tissues, including vascular tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12249642PMC
http://dx.doi.org/10.3390/ijms26136470DOI Listing

Publication Analysis

Top Keywords

design characterization
4
characterization aromatic
4
aromatic copolyesters
4
copolyesters furan
4
furan isophthalic
4
isophthalic rings
4
rings suitable
4
suitable properties
4
properties vascular
4
vascular tissue
4

Similar Publications

Implementing Social Media Strategies in Community-Partnered HIV Research: Practical Considerations From 3 Ongoing Studies.

JMIR Public Health Surveill

September 2025

Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.

Background: In recent years, social media has emerged as a pivotal tool in implementation science efforts to address the HIV epidemic. Engaging community partners is essential to ensure the successful and equitable implementation of social media strategies. There is a notable lack of scholarship addressing the operational considerations for studies using social media strategies in community-partnered HIV research.

View Article and Find Full Text PDF

Essay: Photonic Crystals as a Platform to Explore New Physics.

Phys Rev Lett

August 2025

The Hong Kong University of Science and Technology, Department of Physics and Institute for Advanced Study, Clear Water Bay, Hong Kong SAR, China.

Photonic crystals are artificial materials characterized by a photonic band structure that governs the propagation of light waves. The photonic gap was originally introduced to inhibit spontaneous emission and facilitate photon localization. In this essay, I will highlight how, despite the established understanding of photonic crystals, they remain highly relevant today.

View Article and Find Full Text PDF

Background: Luminal instruments are characterized by their slender internal lumens, which make them particularly challenging to clean and dry. A common drying method used by Sterile Processing Department (SPD) technicians involves blowing high-pressure air into one end of the lumen to expel moisture. However, this process generates a significant amount of aerosols that may contain bacteria, viruses, and other microorganisms.

View Article and Find Full Text PDF

This study focuses on mineral groundwater in alpine regions and its sustainable exploitation. The Tongde basin on Tibetan Plateau was investigated to reveal the hydrochemistry and formation of mineral groundwater in alpine basins and its sustainable development under anthropogenic disturbances. The results show that groundwater there is characterized by enriched strontium, with concentrations in the range of 0.

View Article and Find Full Text PDF