Silibinin Anticancer Effects Through the Modulation of the Tumor Immune Microenvironment in Triple-Negative Breast Cancer.

Int J Mol Sci

Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Triple-negative breast cancer (TNBC), characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), remains a therapeutic challenge due to its aggressive nature, limited treatment options, and high recurrence rates. Current therapies, including chemotherapy and immune checkpoint inhibitors, face resistance driven by tumor heterogeneity, immunosuppressive signaling, and dysregulated redox pathways. This review explores silibinin's potential to modulate the tumor immune microenvironment (TIME) and overcome therapeutic resistance in TNBC. Silibinin exerts multifaceted anticancer effects by suppressing PD-L1 expression through the inhibition of JAK/STAT3 signaling and MUC1-C interaction, attenuating NF-κB-driven inflammation, and downregulating CCL2-mediated recruitment of tumor-associated macrophages (TAMs). Additionally, silibinin disrupts redox adaptation by targeting the Nrf2-EGFR-MYC-TXNIP axis, enhancing oxidative stress and chemosensitivity. Preclinical studies highlight its ability to inhibit epithelial-mesenchymal transition (EMT), reduce cancer stem cell (CSC) populations, and synergize with existing therapies like PD-1 inhibitors. Despite its low bioavailability, advanced formulations such as liposomes and nanoparticles show promise in improving delivery and efficacy. By reshaping TIME through dual antioxidant and immunomodulatory mechanisms, silibinin emerges as a viable adjunct therapy to reverse immunosuppression and chemoresistance in TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250461PMC
http://dx.doi.org/10.3390/ijms26136265DOI Listing

Publication Analysis

Top Keywords

anticancer effects
8
tumor immune
8
immune microenvironment
8
triple-negative breast
8
breast cancer
8
silibinin
4
silibinin anticancer
4
effects modulation
4
modulation tumor
4
microenvironment triple-negative
4

Similar Publications

Immunotherapies, including cell therapies, are effective anti-cancer agents. However, cellular product persistence can be limiting with short functional duration of activity contributing to disease relapse. A variety of manufacturing protocols are used to generate therapeutic engineered T-cells; these differ in techniques used for T-cell isolation, activation, genetic modification, and other methodology.

View Article and Find Full Text PDF

A cationization strategy to simultaneously enhance reactive oxygen species generation and mitochondria targeting ability for enhanced photodynamic therapy.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

Mitochondria-targeted photodynamic therapy (PDT) circumvents the short lifetime and action radius limitation of reactive oxygen species (ROS) and greatly improves the anticancer PDT efficacy. However, current approaches require different molecular engineering strategies to separately improve ROS production and introduce mitochondria targeting ability, which involve tedious synthetic procedures. Herein, we report a facile one-step cationization strategy that simultaneously improves the ROS generation efficiency and introduces mitochondria targeting ability for enhanced PDT.

View Article and Find Full Text PDF

Recent advances in emerging applications and biological activities of tea polysaccharides and their conjugates from leaves and flowers: A review.

Int J Biol Macromol

September 2025

Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Tea (Camellia sinensis) polysaccharides (TPS) and tea polysaccharide conjugates (TPC) are bioactive compounds found in tea leaves and flowers, attracting growing interest for their biological activities and emerging applications in food, pharmaceuticals, and cosmetics. Despite substantial progress in tea polyphenol research, studies focusing on TPS and TPC are still relatively underrepresented. This review fills a gap in the literature by summarizing the latest advancements in the extraction, characterization, and biological effects of TPS and TPC.

View Article and Find Full Text PDF

Indigenous medicine applications, phytochemical and pharmacological properties of Asteriscus graveolens: A comprehensive overview.

Fitoterapia

September 2025

African Medicines Innovations and Technologies Development, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.

Asteriscus graveolens (A. graveolens) belongs to the family Asteraceae. It is native to North Africa and the Asian deserts, with the majority of its distribution in Southwest Algeria and Southeast Morocco.

View Article and Find Full Text PDF

PEGylated dendrimers for precision cancer therapy: Advances in tumor targeting, drug delivery, and clinical translation.

Biomater Adv

September 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

PEGylated dendrimers have emerged as highly adaptable nanocarriers for targeted cancer therapy, offering exceptional control over size, surface functionality, and drug loading. The covalent attachment of polyethylene glycol (PEG) chains to dendrimer surfaces improves biocompatibility, enhances circulation time, and minimizes immune clearance, facilitating passive tumor targeting through the enhanced permeability and retention (EPR) effect. These engineered nanosystems allow for precise encapsulation or conjugation of chemotherapeutic agents, nucleic acids, and imaging probes, with tunable release profiles.

View Article and Find Full Text PDF