98%
921
2 minutes
20
The pathogenesis of diabetic neuropathy involves complex interactions between metabolic and genetic factors. This study aimed to identify novel genetic variants associated with neuropathy risk in type 2 diabetes through reanalysis of whole-exome sequencing data. We identified seven new SNPs with significant associations, including intronic variants in , , , and and a 5'-upstream variant in . These variants are implicated in muscle elasticity, neurotransmission, endothelial regeneration, and apoptosis resistance, suggesting multifaceted genetic contributions to neuropathy development. These findings enhance our understanding of diabetic neuropathy and may support future advances in risk stratification and therapy development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250319 | PMC |
http://dx.doi.org/10.3390/ijms26136239 | DOI Listing |
Diabetes Metab Syndr Obes
September 2025
Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China.
Diabetes has emerged as a critical global health issue, with its associated complications posing a severe threat to patients' quality of life. Current research demonstrates that imbalance in mitochondrial dynamics and autophagic dysregulation play pivotal roles in the pathogenesis of diabetic complications, particularly in diabetic cardiomyopathy, nephropathy, peripheral neuropathy and retinopathy. Strategic modulation of mitochondrial function and autophagic activity represents a promising therapeutic approach for managing diabetic complications.
View Article and Find Full Text PDFCureus
August 2025
General Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, GBR.
Diabetes mellitus is a metabolic condition leading to elevated blood glucose levels due to insulin deficiency, insulin resistance, or a combination of both. Chronically raised blood glucose levels can lead to a broad variety of microvascular and macrovascular complications. Neurological disorders are a common manifestation of diabetes mellitus, and poorly controlled diabetes mellitus frequently causes peripheral sensorimotor polyneuropathy and autonomic neuropathy.
View Article and Find Full Text PDFFront Neurol
August 2025
Department of Neurosurgery, Xingtai Ninth Hospital, Xingtai, China.
Introduction: The aim of this study was to evaluate the clinical outcomes of spinal cord stimulation (SCS) in patients with painful diabetic peripheral neuropathy (PDPN).
Materials And Methods: Ninety-two patients underwent permanent SCS implantation and completed a 6-month post-operative follow-up. The primary endpoint was patient amputation rate, and secondary endpoints included Quality of Life (QOL LC V2.
Front Cell Neurosci
August 2025
Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan.
Background: Imeglimin (Ime), the first in a novel class of antidiabetic agents, has potential therapeutic effects on diabetic peripheral neuropathy (DPN). This study aimed to evaluate and compare the effects on cellular metabolic function and reactive oxygen species (ROS) levels in high glucose-treated mouse Schwann cells (SCs), an DPN model, with those of metformin (Met), a conventional antidiabetic agent known for its beneficial effects on DPN. The roles of PPARα and fatty acid-binding proteins 5 and 7 (FABP5 and FABP7), both of which have been implicated in the pathogenesis of DPN, were also investigated.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2025
Department of Burns, Plastic Surgery and Cosmetology, Chongqing University Fuling Hospital, Chongqing University, Chongqing, China.
Diabetic foot ulcers represent a significant complication of diabetes mellitus, presenting substantial challenges due to their intricate pathogenesis, which encompasses neuropathy, vasculopathy, chronic inflammation, and biofilm-associated infections. Despite considerable advancements in Western medical interventions, including surgical debridement, skin grafting, negative pressure wound therapy, and innovative dressings, these ulcers remain a leading cause of amputation and contribute to a substantial socioeconomic burden. Traditional Chinese medicine (TCM) has emerged as a promising adjunctive therapy, offering multi-targeted mechanisms that address oxidative stress, chronic inflammation, angiogenesis, and microbial resistance associated with diabetic foot ulcers.
View Article and Find Full Text PDF