98%
921
2 minutes
20
When lithium-ion batteries experience thermal runaway, a large amount of heat rapidly accumulates inside, causing the internal pressure to rise sharply. Once the pressure exceeds the battery's safety valve design capacity, the valve activates and releases flammable gas. If ignited in a high-temperature environment, the escaping gas can cause a jet fire containing high-temperature substances. Effectively controlling the internal temperature of the jet fire, especially rapidly cooling the core area of the flame during the jet process, is important to prevent the spread of lithium-ion battery fires. Therefore, this work proposes a strategy of a synergistic effect using microcapsule fire extinguishing agents and fine water mist to achieve an external barrier and an internal attack. The microcapsule fire extinguishing agents are prepared by using melamine-urea-formaldehyde resin as the shell and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (CHFO) and 1,1,2,2,3,3,4-heptafluorocyclopentane (CHF) as the composite core. During the process of lithium-ion battery thermal runaway, the microcapsule fire extinguishing agents can enter the inner area of the jet fire under the protection of the fine water mist. The microcapsule shell ruptures at 100 °C, releasing the highly effective composite fire suppressant core inside the jet fire. The fine water mist significantly blocks the transfer of thermal radiation, inhibiting the spread of the fire. Compared to the suppression with fine water mist only, the time required to reduce the battery temperature from the peak value to a low temperature is reduced by 66 s and the peak temperature of the high-temperature substances above the battery is reduced by 228.2 °C. The propagation of the thermal runaway is suppressed, and no thermal runaway of other batteries around the faulty unit will occur. This synergistic suppression strategy of fine water mist and microcapsule fire extinguishing agent (FWM@M) effectively reduces the adverse effects of jet fires on the propagation of thermal runaway (TR) of lithium-ion batteries, providing a new solution for efficiently extinguishing lithium-ion battery fires.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251268 | PMC |
http://dx.doi.org/10.3390/ma18133082 | DOI Listing |
Top Curr Chem (Cham)
September 2025
Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.
Controlling the size of gold nanoparticles (AuNPs) has been critical in diagnostics, biomolecular sensing, targeted therapy, wastewater treatment, catalysis, and sensing applications. Ultrasmall AuNPs (uAuNPs), with sizes Ranging from 2 to 5 nm, and gold nanoclusters (AuNCs), with sizes less than 2 nm, are often dealt with interchangeably in the literature, making it challenging to review them separately. Although they are grouped in our discussion, their chemical and physical properties differ significantly, partly due to their electronic properties.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
Sum-frequency generation vibrational spectroscopy (SFG-VS) has been well-established as a unique spectroscopic probe to interrogate the structure, interaction, and dynamics of molecular interfaces, with sub-monolayer sensitivity and broad applications. Sub-1 cm-1 High-Resolution Broadband SFG-VS (HR-BB-SFG-VS) has shown advantages with high spectral resolution and accurate spectral line shape. However, due to the lower peak intensity for the long picosecond pulse used in achieving sub-wavenumber resolution in the HR-BB-SFG-VS measurement, only molecular interfaces with relatively strong signal have been studied.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Department of Marine Sciences, University of Puerto Rico at Mayagüez, P.O. Box 9000, Mayagüez, PR 00681 USA.
Unlabelled: The queen snapper ( Valenciennes in Cuvier & Valenciennes, 1828) is a deep-sea snapper whose commercial importance continues to increase in the US Caribbean. However, little is known about the biology and ecology of this species. In this study, the presence of a fine-scale population structure and genetic diversity of queen snapper from Puerto Rico was assessed through 16,188 SNPs derived from the Restriction site Associated DNA Sequencing (RAD-Seq) technique.
View Article and Find Full Text PDFACS Omega
September 2025
State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China.
This study focuses on the issues of poor fluidity, low penetration into residual coal, and suboptimal inhibition of coal spontaneous combustion associated with traditional coal mine gel fire retardants. The permeability and flow characteristics of a sodium alginate-based composite thermosensitive hydrogel, as well as its fire prevention and extinguishment performance, were investigated. The findings suggest that the thermosensitive hydrogel behaves as a pseudoplastic fluid at 40 °C and a yield-pseudoplastic fluid at 65 °C, exhibiting shear-thinning behavior with increasing shear rate.
View Article and Find Full Text PDFChemphyschem
September 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
Excessive fossil fuel combustion has accelerated renewable energy development, with hydrogen energy emerging as a promising alternative due to its high energy density and environmental compatibility. Photocatalytic hydrogen production through solar energy conversion represents a viable approach for sustainable development. Metal-organic frameworks (MOFs) have garnered significant research interest owing to their structural tunability, well-defined catalytic sites, and post-synthetic modification capabilities.
View Article and Find Full Text PDF