Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: The aim of this study was to develop AI-based predictive models to assess the risk of osteoporosis in postmenopausal women using panoramic radiographs (OPTs). : A total of 301 panoramic radiographs (OPTs) from postmenopausal women were collected and labeled based on DXA-assessed bone mineral density. Of these, 245 OPTs from the Hospital of San Giovanni Rotondo were used for model training and internal testing, while 56 OPTs from the University of Parma served as an external validation set. A mandibular region of interest (ROI) was defined on each image. Predictive models were developed using classical radiomics, deep radiomics, and convolutional neural networks (CNNs), evaluated based on AUC, accuracy, sensitivity, and specificity. : Among the tested approaches, classical radiomics showed limited predictive ability (AUC = 0.514), whereas deep radiomics using DenseNet-121 features combined with logistic regression achieved the best performance in this group (AUC = 0.722). For end-to-end CNNs, ResNet-50 using a hybrid feature extraction strategy achieved the highest AUC in external validation (AUC = 0.786), with a sensitivity of 90.5%. While internal testing yielded high performance metrics, external validation revealed reduced generalizability, highlighting the challenges of translating AI models into clinical practice. : AI-based models show potential for opportunistic osteoporosis screening from OPT images. Although the results are promising, particularly those obtained with deep radiomics and transfer learning strategies, further refinement and validation in larger and more diverse populations are essential before clinical application. These models could support the early, non-invasive identification of at-risk patients, complementing current diagnostic pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12249935PMC
http://dx.doi.org/10.3390/jcm14134462DOI Listing

Publication Analysis

Top Keywords

predictive models
12
postmenopausal women
12
panoramic radiographs
12
external validation
12
deep radiomics
12
ai-based predictive
8
women panoramic
8
radiographs opts
8
internal testing
8
classical radiomics
8

Similar Publications

Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.

View Article and Find Full Text PDF

Importance: Increasingly, strategies to systematically detect melanomas invoke targeted approaches, whereby those at highest risk are prioritized for skin screening. Many tools exist to predict future melanoma risk, but most have limited accuracy and are potentially biased.

Objectives: To develop an improved melanoma risk prediction tool for invasive melanoma.

View Article and Find Full Text PDF

Objective: To develop a novel prognostic scoring system for severe cytokine release syndrome (CRS) in patients with B-cell acute lymphoblastic leukemia (B-ALL) treated with anti-CD19 chimeric antigen receptor (CAR)-T-cell therapy, aiming to optimize risk mitigation strategies and improve clinical management.

Methods: This single-center retrospective cohort study included 125 B-ALL patients who received anti-CD19 CAR-T-cell therapy from January 2017 to October 2023. These cases were selected from a cohort of over 500 treated patients on the basis of the availability of comprehensive baseline data, documented CRS grading, and at least 3 months of follow-up.

View Article and Find Full Text PDF

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF