Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(ST) induces antidepressant and anxiolytic effects, purportedly by monoamine regulation, anti-inflammatory and antioxidant properties, and phosphodiesterase 4 (PDE4) inhibition. These multimodal actions have not been demonstrated in an animal model of major depressive disorder. Wistar rats (both sexes) were subjected to 8-week unpredictable chronic mild stress, subsequently receiving saline, a standardized ST extract, Zembrin 25 and 12.5 mg/kg (ZEM25 and ZEM12.5), its primary alkaloid mesembrine (MES), or escitalopram (20 mg/kg) for 36 days. Sucrose preference, open field, Barnes maze, and forced swim tests were performed, with cortico-hippocampal monoamines, inflammatory and oxidative stress markers analyzed post-mortem. Male, but not female rats, presented with increased anhedonia and anxiety but not despair. Males presented with increased hippocampal PDE4B expression, increased dopamine metabolites, and decreased cortical serotonin. In males, ZEM12.5 decreased anhedonia- and anxiety-like behavior, decreased cortical and hippocampal PDE4B, and increased plasma interleukin-10. MES induced a transient decrease in anhedonia-like behavior and increased hippocampal serotonergic and cortical dopaminergic activity, whilst decreasing hippocampal PDE4B. ZEM25 increased plasma interleukin-10 but decreased cortical glutathione, indicating paradoxical anti-inflammatory and prooxidant effects. ZEM12.5 and MES more effectively addressed anxious-depressive-like behavior and stress-induced inflammation and monoaminergic alterations, respectively. Multitargeted actions on monoamines, redox-inflammation, and PDE4 may provide ST with antidepressant effects across multiple symptom domains, although mutually synergistic/antagonistic effects of constituent alkaloids should be considered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12249403PMC
http://dx.doi.org/10.3390/cells14131029DOI Listing

Publication Analysis

Top Keywords

hippocampal pde4b
12
decreased cortical
12
unpredictable chronic
8
chronic mild
8
mild stress
8
presented increased
8
increased hippocampal
8
increased plasma
8
plasma interleukin-10
8
increased
6

Similar Publications

(ST) induces antidepressant and anxiolytic effects, purportedly by monoamine regulation, anti-inflammatory and antioxidant properties, and phosphodiesterase 4 (PDE4) inhibition. These multimodal actions have not been demonstrated in an animal model of major depressive disorder. Wistar rats (both sexes) were subjected to 8-week unpredictable chronic mild stress, subsequently receiving saline, a standardized ST extract, Zembrin 25 and 12.

View Article and Find Full Text PDF

Novel application of cycloastragenol target microglia for the treatment of Alzheimer's disease: Evidence from single-cell analysis, network pharmacology and experimental assessment.

Phytomedicine

April 2025

Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory

Background: Cycloastragenol (CAG), a compound extracted from Astragalus, is known for its telomerase activation and anti-inflammatory, antioxidant properties. However, its potential pharmacological effects on Alzheimer's disease (AD) remain unclear.

Purpose: This study aimed to explore potential targets and molecular mechanisms for the role of CAG in alzheimer's disease (AD) treatment.

View Article and Find Full Text PDF

Schizophrenia symptomatology includes negative symptoms and cognitive impairment. Several studies have linked schizophrenia with the PDE4 family of enzymes due to their genetic association and function in cognitive processes such as long-term potentiation. We conducted a systematic gene expression meta-analysis of four PDE4 genes (PDE4A-D) in 10 brain sample datasets (437 samples) and three blood sample datasets (300 samples).

View Article and Find Full Text PDF

Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling.

Cell Rep

April 2023

Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA; Gale & Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA. Electronic address:

The regulation of neurons by circadian clock genes is thought to contribute to the maintenance of neuronal functions that ultimately underlie animal behavior. However, the impact of specific circadian genes on cellular and molecular mechanisms controlling synaptic plasticity and cognitive function remains elusive. Here, we show that the expression of the circadian protein TIMELESS displays circadian rhythmicity in the mammalian hippocampus.

View Article and Find Full Text PDF

Sleep deprivation (SD) interferes with long-term memory and cognitive functions by overactivation of phosphodiesterase (PDEs) enzymes. PDE4, a nonredundant regulator of the cyclic nucleotides (cAMP), is densely expressed in the hippocampus and is involved in learning and memory processes. In the present study, we investigated the effects of Roflumilast (ROF), a PDE4B inhibitor, on sleep deprivation-induced cognitive dysfunction in a mouse model.

View Article and Find Full Text PDF