Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Over the past few decades, rapid advancements among cell culture models have come up as valuable assets in neurobiological research to understand the complexities of the human brain, disease development and progression at cellular and molecular levels. However, conventional 2D cell culture methods often fail to provide deeper insights into the complex phenomenon of neural cytoarchitecture. This limitation has led to the development of neural organoids such as neurospheres, which offer a closer representation of several neuronal cells. Microfluidics-based neuronal culture platforms further enhance neurosphere generation by enabling precise spatiotemporal control of physical and chemical cues. Here we report the design and fabrication of a low-cost, novel microfluidic device using a cutting-edge and cost-effective xurography technique. We further performed primary neuron culture, forming neurospheres and single cells at varying seeding densities inside the microchannels. Furthermore, to validate the compatibility of the microfluidic device for neuronal disease model generation, we cultured SH-SY5Y cell lines and checked their differentiation inside the chamber. Additionally, we demonstrated the application of the fabricated device as a coculture model using astrocytes and neurons. Finally, in an Alzheimer's disease model context, we tested the device using a multitargeted compound, TDSB, with three important moieties to manage reactive oxygen species in the differentiated SH-SY5Y cells. The results revealed that TDSB can decrease metal-induced ROS generation and inhibit Aβ-Cu(II) induced cytotoxicity. Therefore, our multifaceted microfluidic device can open avenues for neuronal culture and coculture, neurodegenerative disease modeling, and screening of novel neurotherapeutic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.5c00016DOI Listing

Publication Analysis

Top Keywords

microfluidic device
12
design fabrication
8
neuron culture
8
cell culture
8
neuronal culture
8
disease model
8
culture
6
device
5
crafting precision
4
precision design
4

Similar Publications

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

Tunable cell separation using a thermo-responsive deterministic lateral displacement device.

Lab Chip

September 2025

Institute of Integrated Research, Institute of Science Tokyo, R2-9, 4259 Nagatsuta-cho, Midoriku, Yokohama, Kanagawa 226-8501, Japan.

Tunability in isolating target cells of varying sizes from complex heterogeneous samples is essential for biomedical research and diagnostics. However, conventional deterministic lateral displacement (DLD) systems lack flexibility due to their fixed critical diameters (). Here, we present a thermo-responsive DLD micropillar array that enables tunable cell separation by dynamically modulating through temperature control.

View Article and Find Full Text PDF

Food nutrition and safety are fundamental to the food industry, and the development of appropriate research models is crucial. Unlike traditional animal models, the innovative organoid/organ-on-a-chip model possess distinct human-like characteristics and genomic stability, which have garnered significant attention in food research. In this review, we conduct a comparative analysis between organoids and traditional animal and 2D cell models.

View Article and Find Full Text PDF

Protective effect of osmanthus water extract on liver dysfunction caused by DBP based on organoids and organ chips technologies.

Food Res Int

November 2025

Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China. Electronic address:

This study aimed to investigate the protective mechanism of Osmanthus fragrans water extract (OSF) against liver injury induced by dibutyl phthalate (DBP). We utilized liver organoids and liver organ chip technology to replicate the liver microenvironment in vivo. Metabolomic analysis revealed that DBP induced oxidative stress and lipid metabolism disorders; however, following intervention with OSF, the associated abnormal metabolites were significantly reduced.

View Article and Find Full Text PDF

An electrochemiluminescence device powered by streaming potential for the detection of amines in flowing solution.

Nat Commun

September 2025

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Nagatsuta-cho, Midori-ku, Yokohama, Japan.

The research and implementation of portable and low-cost analytical devices that possess high reproducibility and ease of operation is still a challenging task, and a growing field of importance, within the analytical research. Herein, we report the concept, design and optimization of a microfluidic device based on electrochemiluminescence (ECL) detection that can be potentially operated without electricity for analytical purposes. The device functions exploiting the concept of streaming potential-driven bipolar electrochemistry, where a potential difference, generated from the flow of an electrolyte through a microchannel under the influence of a pressure gradient, is the driving force for redox reactions.

View Article and Find Full Text PDF