Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Predicting the protein stability changes upon mutations is one of the effective ways to improve the efficiency of protein engineering. Here, we propose a dual-view ensemble learning-based framework, DVE-stability, for mutation-induced protein stability change prediction from single sequence. DVE-stability integrates the global and local dependencies of mutations to capture the intramolecular interactions from two views through ensemble learning, in which a structural microenvironment simulation module is designed to indirectly introduce the information of structural microenvironment at the sequence level. DVE-stability achieved state-of-the-art prediction performance on seven single-point mutation benchmark datasets, and comprehensively surpassed other methods on five of them. Furthermore, DVE-stability outperformed other methods comprehensively through zero-shot inference on multiple-point mutation prediction task, demonstrating superior model generalizability to capture the epistasis of multiple-point mutations. More importantly, DVE-stability exhibited superior generalization performance in predicting rare beneficial mutations that are crucial for practical protein directed evolution scenarios. In addition, DVE-stability identified important intramolecular interactions via attention scores, demonstrating interpretable. Overall, DVE-stability provides a flexible and efficient tool for mutation-induced protein stability change prediction in an interpretable ensemble learning manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245664PMC
http://dx.doi.org/10.1093/bib/bbaf319DOI Listing

Publication Analysis

Top Keywords

protein stability
16
ensemble learning
12
predicting protein
8
stability changes
8
changes mutations
8
dual-view ensemble
8
single sequence
8
mutation-induced protein
8
stability change
8
change prediction
8

Similar Publications

Chronic diarrhea is a frequent gastrointestinal complication in both type 1 (T1D) and type 2 diabetes (T2D), although the underlying mechanisms differ: T1D is linked to autonomic neuropathy and disrupted transporter regulation, while T2D is often linked to medications and intestinal inflammation. Using streptozotocin-induced mouse models of T1D and T2D, we observed increased luminal fluid in the small intestine of both. Given the role of Na⁺/H⁺ exchanger 3 (NHE3) in fluid absorption and its loss in most diarrheal diseases, we examined NHE3 expression across intestinal segments.

View Article and Find Full Text PDF

Motivation: The stability of protein interfaces influences protein dynamics and unfolding cooperativity. Although in some cases the dynamics of proteins can be deduced from their topology, much of the stability of an interface is related to the complementarity of the interacting parts. It is also important to note that proteins that display non-cooperative unfolding cannot be rationally stabilized unless the regions that unfold first are known.

View Article and Find Full Text PDF

Purpose: We aimed to compare the effects of atelocollagen (AC) and individual growth factors on the expression of key molecular markers associated with tendon healing.

Methods: C2C12 myoblasts were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 5% fetal bovine serum (FBS) and treated with 1 nM or 10 nM of Atelocollagen (AC), bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta 1 (TGF-β1), insulin-like growth factor-1 (IGF-1), or vascular endothelial growth factor (VEGF) for 5 days. After 5 days of treatment, cells were harvested from the culture medium, and Western blot analysis was performed to quantify the expression of phosphorylated extracellular signal-regulated kinase (p-ERK), Collagen type I (Col I), Collagen type Ⅲ (Col Ⅲ), and Tenascin C (TnC).

View Article and Find Full Text PDF

NSUN6 Promotes Gastric Cancer Progression by Stabilizing CEBPZ mRNA in a mC-Dependent Manner.

Appl Biochem Biotechnol

September 2025

Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.

Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.

View Article and Find Full Text PDF

The oncogenic role of NSUN2 in lung adenocarcinoma by stabilizing CCT5 mRNA via a YBX1-dependent m5C modification.

Mol Cell Biochem

September 2025

Department of Laboratory Medicine, The People's Hospital of Zhongjiang, No. 96, Dabei Street, Kaijiang Town, Zhongjiang County, Deyang City, 618100, Sichuan Province, China.

5-methylcytosine (m5C) methylation is a post-transcriptional modification of RNAs, and its dysregulation plays pro-tumorigenic roles in lung adenocarcinoma (LUAD). Here, this study elucidated the mechanism of action of NSUN2, a major m5C methyltransferase, on LUAD progression. mRNA expression was analyzed by quantitative PCR.

View Article and Find Full Text PDF