Efficient and versatile rapeseed transformation for new breeding technologies.

Plant J

Plant Developmental Biology and Physiology, Kiel University, Am Botanischen Garten 5, 24118, Kiel, Germany.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many gene functions are widely studied and understood in Arabidopsis; however, the lack of efficient transformation systems often limits the application and verification of this knowledge in crop plants. Brassica napus L., a member of the Brassicaceae family, is usually transformed by Agrobacterium-mediated hypocotyl transformation, but not all growth types are equally amenable to transformation. In particular, winter rapeseed, which requires vernalization to initiate flowering, is recalcitrant to in vitro regeneration and transformation. The analysis of gene functions in rapeseed is further complicated by the allotetraploid nature of its genome and the genome triplication within the Brassica genus, which has led to the presence of a large number of gene homologs for each Arabidopsis ortholog. We have established a transformation method that facilitates the regeneration of winter rapeseed by using the WUSCHEL gene from Beta vulgaris. This allowed us to efficiently transform a winter and spring rapeseed genotype in small-scale experiments. As proof of principle, we targeted BnCLV3 and BnSPL9/15 with CRISPR/Cas9 and showed that entire gene families are effectively edited using this transformation protocol. This allowed us to simultaneously study many redundantly acting homologous genes in rapeseed. We observed mutant phenotypes for BnCLV3 and BnSPL9/15 in primary transformants, indicating that biallelic knockouts were obtained for up to eight genes. This allowed an initial phenotypic characterization to be performed already a few months after starting the experiment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245476PMC
http://dx.doi.org/10.1111/tpj.70330DOI Listing

Publication Analysis

Top Keywords

gene functions
8
winter rapeseed
8
bnclv3 bnspl9/15
8
transformation
7
rapeseed
6
gene
5
efficient versatile
4
versatile rapeseed
4
rapeseed transformation
4
transformation breeding
4

Similar Publications

This study investigates the effects of L-carnitine on nuclear maturation and fertilization in cattle and goat oocytes. Ovaries were collected from females with poor reproductive efficiency in the tropical climate, and cumulus-oocyte complexes (COCs) were retrieved from large antral follicles. COCs were cultured with varying concentrations of L-carnitine (0, 0.

View Article and Find Full Text PDF

Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.

View Article and Find Full Text PDF

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.

View Article and Find Full Text PDF

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF