98%
921
2 minutes
20
The stereochemical activity of lone-pair electrons critically influences lattice anharmonicity and thermal transport in crystals. However, traditional chemical substitution methods lack continuity and reversibility. We propose a strain-engineered bond angle distortion strategy in layered BiCuSeO to continuously modulate lone-pair electrons. Theoretically, tensile strain reduces the O-Bi-O bond angle, expands lone-pair electron spatial distribution, and decreases Bi-O bond charge overlap, intensifying Bi atom anharmonic vibrations. Furthermore, tensile strain induces reverse O atom vibrations and strong lattice dynamic disorder, lowering the phonon band gap and enhancing anharmonic phonon-phonon interactions and Umklapp scattering. Importantly, strain modulates lone-pair electron distribution and interaction strength without uniformly weakening long-range interatomic forces. As a result, 4% tensile strain reduces lattice thermal conductivity of BiCuSeO to 0.53 W/mK (54% decrease) at 300 K. This work establishes a multiscale framework linking strain, lone-pair electron behavior, and phonon dynamics, enabling robust and continuous control of thermal transport properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238364 | PMC |
http://dx.doi.org/10.1038/s41467-025-61506-6 | DOI Listing |
Chem Rec
September 2025
Department of Chemical Engineering, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, M. P., 462066, India.
Flow fields (FFs) play multifaceted roles in direct methanol fuel cells (DMFC) by facilitating the transport and distribution of species, removal of products, support to the membrane electrode assembly (MEA), electrical conductivity, water, and thermal management. Therefore, the performance of DMFC is directly related to the pattern and geometry of the FF. DMFCs can generate power density of up to ≈100-300 mW cm; however, their performance is impeded by cathode flooding, CO gas bubbles formation, and mass transfer limitations.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
Modulating cell endocytosis activity to reduce host susceptibility to virus represents a promising strategy for antiviral drug development. In this study, we reveal that lactate transporter SLC16A3 is a critical host factor for reducing diverse virus invasion. By performing metabolomics, proteomics, and thermal proteome profiling experiments, AP1G1, a pivotal protein involved in cellular endocytosis, was indiscriminately screened as a chaperone of SLC16A3.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.
MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
Coarsening and degradation phenomena in metals have largely focused on thermally driven processes, such as bulk and surface diffusion. However, dramatic coarsening has been reported in high-surface-area, nanometer-sized Pt-based catalysts during potential cycling in an electrolyte at room temperature─a temperature too low for the process to be explained purely by surface mobility values measured in both vacuum and electrolytes (∼10 and ∼10 cm/s, respectively). This morphological evolution must be due to a different mechanism for mass transport that is sensitive to electrochemical conditions (e.
View Article and Find Full Text PDF