Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Advances in genomic medicine accelerate the identification of mutations in disease-associated genes, but the pathogenicity of many mutations remains unknown, hindering their use in diagnostics and clinical decision-making. Predictive AI models are generated to combat this issue, but current tools display low accuracy when tested against functionally validated datasets. We show that integrating detailed conformational data extracted from molecular dynamics simulations (MDS) into advanced AI-based models increases their predictive power. We carry out an exhaustive mutational analysis of the disease gene PMM2 and subject structural models of each variant to MDS. AI models trained on this dataset outperform existing tools when predicting the known pathogenicity of mutations. Our best performing model, a neuronal networks model, also predicts the pathogenicity of several PMM2 mutations currently considered of unknown significance. We believe this model helps alleviate the burden of unknown variants in genomic medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234709PMC
http://dx.doi.org/10.1038/s42003-025-08334-yDOI Listing

Publication Analysis

Top Keywords

genomic medicine
8
pathogenicity mutations
8
mutations
5
dynamicasome-a molecular
4
molecular dynamics-guided
4
dynamics-guided ai-driven
4
pathogenicity
4
ai-driven pathogenicity
4
pathogenicity prediction
4
prediction catalogue
4

Similar Publications

Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.

View Article and Find Full Text PDF

LONP1 Variants Are Associated With Clinically Diverse Phenotypes.

Clin Genet

September 2025

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.

View Article and Find Full Text PDF

Purpose: Next-generation sequencing (NGS) has revolutionized cancer treatment by enabling comprehensive cancer genomic profiling (CGP) to guide genotype-directed therapies. While several prospective trials have demonstrated varying outcomes with CGP in patients with advanced solid tumors, its clinical utility in colorectal cancer (CRC) remains to be evaluated.

Methods: We conducted a prospective observational study of CGP in our hospital between September 2019 and March 2024.

View Article and Find Full Text PDF

The first complete mitochondrial genome of Spinturnix psi (Dermanyssoidea, Spinturnicidae): gene content, composition, rearrangement and phylogenetic implications.

Exp Appl Acarol

September 2025

Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, 22 Wanhua St, Dali, 671000, China.

The family Spinturnicidae belongs to the suborder Monogynapsida, superfamily Dermanyssoidea, and exclusively parasitizes the body surface of bats. In the present study, we determined the complete mitochondrial genome of Spinturnix psi, a species of bat mite, and subsequently conducted a comprehensive analysis of its genomic information. The mitochondrial genome of S.

View Article and Find Full Text PDF

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF