98%
921
2 minutes
20
Peripheral nerve injuries (PNIs) by transection require reconstructive surgery, often with highly variable results and persistent sensory and motor deficits. Three-dimensional (3D) printing enables the biofabrication of nerve guidance conduits (NGCs) with the ability to release neurotrophic factors, showing therapeutic potential. We developed a 3D printing process of NGCs using polycaprolactone (PCL) and gelatin methacryloyl (GelMA) integrated with a thermostable fibroblast growth factor 2 (FGF-2). The synthesized GelMA at 10% (w/v) concentration showed superior rheological, mechanical, and ultrastructural characteristics, ensuring 3D printing fidelity. Incorporating FGF-2 into GelMA resulted in a controlled release pattern over 30 days along with biocompatibility and an increase of metabolism in rat S16 Schwann cells and human mesenchymal stem cells (MSCs). MSCs exhibited gene regulation linked to vascularization after FGF-2 stimulation. The PCL polymer facilitated the buildability of a spiral-patterned tubular structure, which was functionalized with a combination of GelMA and UV photocrosslinked. At 12 weeks, following a long-gap nerve injury in rats, NGC implantation enhanced sensory and motor recovery, improved electrophysiological function, and promoted morphological and ultrastructural nerve reorganization and regeneration. At 4 weeks, significant Schwann cell proliferation (S100), expression of the pan-neurotrophin receptor (P75NTR), myelination of newly grown axons, and organization of neurofilaments were observed. The bioactive NGCs represent a promising alternative to nerve autografts for the repair of long-gap injuries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278209 | PMC |
http://dx.doi.org/10.1021/acsami.5c08237 | DOI Listing |
Front Neurosci
August 2025
First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
Background: Spinal cord injury (SCI) often leads to severe motor and sensory impairments, and current treatment methods have not achieved complete neural repair. In recent years, exosomes have become a research focus in the treatment of nerve injuries due to their important roles in intercellular information transfer, immune regulation, and neural repair. Our study conducts a scientometric analysis to map the research landscape related to exosomes in SCI.
View Article and Find Full Text PDFCureus
August 2025
Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, BGR.
This report presents the case of a 36-year-old man complaining of chronic low back pain and numbness along the posterolateral surface of the right leg. Magnetic resonance imaging (MRI) revealed a disc degeneration and protrusion at the L-S level and an extensive fluid-equivalent formation with a craniocaudal dimension of 8 cm at the S-S level. Initially, due to the minimal clinical complaints, the cyst was considered asymptomatic.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
September 2025
College of Pharmacy, National University of Science and Technology, Muscat, Oman.
Neurological disorders are complex conditions characterized by impairment of the nervous system, affecting motor, cognitive, and sensory functions. Current treatments meet substantial obstacles, primarily due to the difficulty of transporting drugs across the blood-brain barrier and ineffective therapy for nerve regeneration. Emerging technologies, such as electrospinning, offer innovative solutions to overcome these challenges.
View Article and Find Full Text PDFBMC Neurol
September 2025
Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.
Background: Parkinson's disease (PD) is characterized by motor symptoms altering gait domains such as slow walking speed, reduced step and stride length, and increased double support time. Gait disturbances occur in the early, mild to moderate, and advanced stages of the disease in both backward walking (BW) and forward walking (FW), but are more pronounced in BW. At this point, however, no information is available about BW performance and disease stages specified using the Hoehn and Yahr (H&Y) scale.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Department of Neurology, Columbia University, New York, NY, 10032, USA.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.
View Article and Find Full Text PDF