Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Health administrative databases often contain no information on some important confounders, leading to residual confounding in the effect estimate. We aimed to explore the performance of high-dimensional disease risk score (hdDRS) to deal with residual confounding bias for estimating causal effects with survival outcomes.

Methods: We used health administrative data of 49 197 individuals in British Columbia to examine the relationship between tuberculosis infection and time-to-development of cardiovascular disease (CVD). We designed a plasmode simulation exploring the performance of eight hdDRS methods that varied by different approaches to fit the risk score model and also examined results from high-dimensional propensity score (hdPS) and traditional regression adjustment. The log-hazard ratio (log-HR) was the target parameter with a true value of log(3).

Results: In the presence of strong unmeasured confounding, the bias observed was -0.11 for the traditional method and -0.047 for the hdPS method. The bias ranged from -0.051 to -0.058 for hdDRS methods when risk score models were fitted to the full cohort and -0.045 to -0.049 when risk score models were fitted only to unexposed individuals. All methods showed comparable standard errors and nominal bias-eliminated coverage probabilities. With weak unmeasured confounding, hdDRS and hdPS produced approximately unbiased estimates. Our data analysis, after addressing residual confounding, revealed an 8%-11% higher CVD risk associated with tuberculosis infection.

Conclusions: Our findings support the use of selected hdDRS methods to address residual confounding bias when estimating treatment effects with survival outcomes. In particular, the hdDRS method using rate-based risk score modeling on unexposed individuals consistently exhibited the least bias. However, the hdPS method showed comparable performance across most evaluated scenarios. We share reproducible R codes to facilitate researchers' adoption and further evaluation of these methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229743PMC
http://dx.doi.org/10.1002/pds.70172DOI Listing

Publication Analysis

Top Keywords

risk score
24
residual confounding
20
confounding bias
16
bias estimating
12
effects survival
12
hddrs methods
12
high-dimensional disease
8
disease risk
8
estimating treatment
8
treatment effects
8

Similar Publications

To analyze in-hospital mortality in children undergoing congenital heart interventions in the only public referral center in Amazonas, North Brazil, between 2014 and 2022. This retrospective cohort study included 1041 patients undergoing cardiac interventions for congenital heart disease, of whom 135 died during hospitalization. Records were reviewed to obtain demographic, clinical, and surgical data.

View Article and Find Full Text PDF

It is claimed that polygenic risk scores will transform disease prevention, but a typical polygenic risk score for a common disease only detects 11% of affected individuals at a 5% false positive rate. This level of screening performance is not useful. Claims to the contrary are either due to incorrect interpretation of the data or other influences.

View Article and Find Full Text PDF

Importance: Higher intellectual abilities have been associated with lower mortality risk in several longitudinal cohort studies. However, these studies did not fully account for early life contextual factors or test whether the beneficial associations between higher neurocognitive functioning and mortality extend to children exposed to early adversity.

Objective: To explore how the associations of child neurocognition with mortality changed according to the patterns of adversity children experienced.

View Article and Find Full Text PDF