98%
921
2 minutes
20
Zinc (Zn) is an essential trace element that plays a crucial role in various biological functions. Aberrant Zn homeostasis may lead to the occurrence and development of diseases. Zinc transporters, primarily classified into two families in humans: the ZnT (SLC30A) family and the ZIP (SLC39A) family, are critical regulators of Zn homeostasis. The roles of ZnT-mediated Zn homeostasis in diseases are an active area of research. The ZnT family comprises ten members, belonging to four subfamilies, which are widely distributed in various tissues and subcellular organelles. ZnTs mediate directional Zn efflux, transporting cytoplasmic Zn into extracellular compartments or sequestering it within intracellular vesicles. Accumulating evidence has shown that ZnT dysregulation or ZnT mutations can disrupt Zn homeostasis, leading to the occurrence and development of diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. In this review, we focus on the distribution and structure of ZnTs. Furthermore, we synthesize recent advances in ZnT-mediated regulation of Zn homeostasis in disease pathogenesis to guide the development of novel diagnostic and therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.70056 | DOI Listing |
RNA Biol
September 2025
Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea.
Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.
View Article and Find Full Text PDFJ Appl Genet
September 2025
Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland.
Mechanical wounding triggers rapid transcriptional and hormonal reprogramming in plants, primarily driven by jasmonate (JA) signalling. While the role of JA, ethylene, and salicylic acid in wound responses is well characterised, the contribution of strigolactones (SLs) remains largely unexplored. Here, for the first time, it was shown that SLs modulate wound-induced transcriptional dynamics in Arabidopsis thaliana.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFNeurochem Res
September 2025
School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.
View Article and Find Full Text PDFPlant J
September 2025
Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
Plastoglobuli (PG) are plant lipoprotein compartments, present in plastid organelles. They are involved in the formation and/or storage of lipophilic metabolites. FIBRILLINs (FBNs) are one of the main PG-associated proteins and are particularly abundant in carotenoid-enriched chromoplasts found in ripe fruits and flowers.
View Article and Find Full Text PDF