98%
921
2 minutes
20
The silicon-based field-effect transistor (FET) is approaching the physical limits for the prominent short-channel effects and the sequent leakage currents under the conventional paradigm. Here, we propose a momentum-dependent field-effect transistor (MD-FET) to address this issue, in which a monolayer 2D semiconductor is sandwiched by two cross 1D carbon nanotube electrodes. The MD-FET enables a perfect off state, as the elastic tunneling is forbidden by the momentum mismatch between the cross 1D contacts. It can also access a substantial on state, because the momentum mismatch can be compensated by the electron-phonon scattering in a 2D channel. The MD-FET with sub-1-nm channel thus exhibits high on/off ratios of ~10, which breaks through the theoretical limit on the short-channel effect. The MD-FET opens up a previously unknown paradigm to further scale down transistors beyond silicon and inspires a promising solution for the post-Moore era.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227061 | PMC |
http://dx.doi.org/10.1126/sciadv.adv4742 | DOI Listing |
J Mol Model
September 2025
Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna, Bihar, India.
Context: This study investigates the radiation tolerance of a SiGe source vertical tunnel field effect transistor (VTFET) under heavy ion-induced single event effects (SEEs). Single event effects (SEEs) occur when high-energy particles interact with semiconductor devices, leading to unintended behavior. The effect of high energy ions on the VTFET is examined for various linear energy transfer (LET) values and at multiple ion hit locations.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.
The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.
While fluorene-containing materials are widely used in organic optoelectronics as bright emitters and hole semiconductors, their diazafluorene analogues have been poorly explored, though their nitrogen atoms could result in electron transport and bring sensory abilities. Here, we report the synthesis, characterization, and detailed study of a series of 4,5-diazafluorene-derivatives with different donor/acceptor substituents and organic semiconductors based on these molecules. The crystal structures of all the materials were solved by X-ray diffraction, indicating the presence of extensive π-stacking and anisotropic charge-transfer pathways.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Nanoelectronics Graphene and 2D Materials Laboratory, CITIC-UGR, Department of Electronics, University of Granada, Granada 18014, Spain.
The relentless scaling of semiconductor technology demands materials beyond silicon to sustain performance improvements. Transition metal dichalcogenides (TMDs), particularly MoS, offer excellent electronic properties; however, achieving scalable and CMOS-compatible fabrication remains a critical challenge. Here, we demonstrate a scalable and BEOL-compatible approach for the direct wafer-scale growth of MoS devices using plasma-enhanced atomic layer deposition (PE-ALD) at temperatures below 450 °C, fully compliant with CMOS thermal budgets.
View Article and Find Full Text PDFNanoscale
September 2025
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
Chemical doping has emerged as a powerful approach for modulating the electronic properties of graphene, and particularly for enabling its integration into advanced electronic and optoelectronic devices. While considerable progress has been made in achieving stable p-type doping, realizing efficient and reliable n-type doping remains a greater challenge due to the inherent instability of most electron-donating dopants and intrinsic semi-metallic nature of pristine graphene. This review summarises the recent developments in n-type chemical doping of graphene films, with a primary focus on substitutional doping and surface charge transfer mechanisms.
View Article and Find Full Text PDF