Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The treatment of chronic diabetic wounds faces considerable challenges owing to complex environments in the wound bed, such as chronic inflammation, excessive reactive oxygen species (ROS), impaired extracellular matrix (ECM) and bacterial infection. Current strategies, including bandages, hydrogel dressings and medical devices, that focus solely on a few pathological features have limited success. Herein, a fast self-gelling polyacrylic acid (PAA) derivative/madecassoside (MA) particulate dressing with anti-inflammatory, antioxidative, collagen deposition-promoting and intrinsic antibacterial properties is developed to simultaneously regulate the wound microenvironment and promote tissue regeneration in infected diabetic wounds. The incorporation of N-[Tris(hydroxymethyl)methyl]acrylamides (THMA), a small molecule compound that has three hydroxy groups clustered together, into the PAA backbone confers the copolymer with self-gelation, robust wet tissue adhesion and a strong capacity to load MA via multiple hydrogen bonding. The developed dual-component particulate dressing effectively regulated macrophage polarization towards the anti-inflammatory phenotype, and displayed potent antibacterial activity against both Gram-positive (99.2 %) and Gram-negative (90.8 %) at a dose of 8 mg mL. Further, the dressing obviously accelerated the healing of full-thickness skin wounds compared with commercial fibrin glue in a -infected diabetic mouse model. This multifunctional PAA-based wound dressing is potentially valuable for clinical applications towards diabetic foot ulcers, pressure ulcers and other conditions of acute or chronic wounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221712 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2025.102005 | DOI Listing |