98%
921
2 minutes
20
Background: Gut microbiota play a critical role in developing hyperuricemic nephropathy (HN). We previously found that sulfur-containing amino acid taurine (T) has nephroprotective effects in hyperuricemia (HUA) rats. However, the mechanism is still unclear. To investigate the underlying mechanism of T, rats were fed adenine and ethambutol hydrochloride for the introduction of HN.
Methods: Pathological changes in the kidney were assessed using hematoxylin and eosin staining. 16S rRNA sequencing and metabolomics analyzed changes in the gut microbiota and fecal metabolism, and experiments were conducted to investigate the potential action and mechanism of T against HN.
Results: results demonstrated that T could inhibit NF-κB, IL-1β, IL-6, TNF-α, and ROS in UA-induced HK-2 cells. It also improved renal function, ameliorated renal fibrosis, and reversed enteric dysbacteriosis in HN rats. These results showed that T protects against HN through the modulation of metabolites mediated by the gut microbiota. Meanwhile, gut microbiota included and showed correlations with nephroprotective profiles of T. The combined analysis of 16S rRNA gene sequencing and untargeted metabolomics indicated that the anti-HN effects of T could be achieved through phenylalanine metabolism, caffeine metabolism, nicotinate and nicotinamide metabolism, retinol metabolism, and tryptophan metabolism.
Conclusion: These findings suggest that the potential protective mechanism of T for HN is not only related to altered metabolic pathways and downregulation of inflammatory cytokines but also to the reciprocal regulation of microbiota structure and metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213340 | PMC |
http://dx.doi.org/10.3389/fnut.2025.1587198 | DOI Listing |
Int J Surg
September 2025
Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), Guangdong, China.
Curr Atheroscler Rep
September 2025
Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.
Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.
Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.
Food Funct
September 2025
College of Food Science, Southwest University, Chongqing, 400715, China.
Bifidobacteria are naturally found in the human gut and quickly establish dominance shortly after birth, playing a crucial role in the development and stability of the infant gut microbiota. A growing body of research suggests that host and environmental factors shape the colonization and the relative abundance of bifidobacteria in the infant gut during early life. Understanding the factors that influence bifidobacterial colonization and maintaining normal colonization levels are keys to ensuring gut health.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Medical Microbiology and Parasitology, Faculty of Medicine, Selangor Branch, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, 47000, Selangor, Malaysia.
Streptococcus bovis is an opportunistic bacterium consistently associated with colorectal cancer (CRC). This article reviews previous experimental evidence that has successfully demonstrated the role of S. bovis species in the context of CRC.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.
View Article and Find Full Text PDF