98%
921
2 minutes
20
Service members and law enforcement personnel are frequently exposed to blast overpressure during training and combat due to the use of heavy weaponry such as large-caliber rifles, explosives, and ordnance. The cumulative effects of these repeated low-level (<4 psi) blast exposures can lead to physical and cognitive deficits that are poorly understood. Brain organoids-human stem cell-derived three-dimensional culture systems that self-organize to recapitulate the environment of the human brain-are a promising alternative biological model to traditional cellular cultures and animal models, offering a unique opportunity for studying the mechanisms of mild blast-induced traumatic brain injury (mbTBI) resulting from repeated exposure. In this article, we review the current state of brain organoid models and discuss future directions for advancing their physiological relevance for studying mbTBI. These will be presented within a framework for developing next-generation platforms that integrate relevant loading devices, as well as non-invasive technologies for assessing the brain organoid's response while increasing throughput. These next-generation platforms aim to accelerate the development of new interventions for mbTBI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213761 | PMC |
http://dx.doi.org/10.3389/fbioe.2025.1553609 | DOI Listing |
Chem Commun (Camb)
September 2025
University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Rebublic of Serbia.
Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.
View Article and Find Full Text PDFMater Horiz
September 2025
TU Delft, Netherlands.
Soft wearable sensors offer promising potential for advanced diagnostics, therapeutics, and human-machine interfaces. Unlike conventional devices that are bulky and rigid, often compromising skin integrity, comfort, and user compliance, soft wearable sensors are flexible, conformable, and better suited to the dynamic skin surface. This improved mechanical integration enhances signal fidelity and device performance, while also enabling safer, more comfortable, and continuous physiological monitoring in real-world environments.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Materials Science & Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
Memtransistors are active analog memory devices utilizing ionic memristive materials as channel layers. Since their introduction, the term "memtransistor" has widely been adopted for transistors exhibiting nonvolatile memory characteristics. Currently, memtransistor devices possessing both transistor on/off functionality and nonvolatile memory characteristics include ferroelectric field-effect transistors (FeFETs) and charge-trap flash (floating gate), yet ionic memtransistors have not matched their performance.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
Purpose: Next-generation sequencing (NGS) has revolutionized cancer treatment by enabling comprehensive cancer genomic profiling (CGP) to guide genotype-directed therapies. While several prospective trials have demonstrated varying outcomes with CGP in patients with advanced solid tumors, its clinical utility in colorectal cancer (CRC) remains to be evaluated.
Methods: We conducted a prospective observational study of CGP in our hospital between September 2019 and March 2024.
Biomater Adv
September 2025
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
PEGylated dendrimers have emerged as highly adaptable nanocarriers for targeted cancer therapy, offering exceptional control over size, surface functionality, and drug loading. The covalent attachment of polyethylene glycol (PEG) chains to dendrimer surfaces improves biocompatibility, enhances circulation time, and minimizes immune clearance, facilitating passive tumor targeting through the enhanced permeability and retention (EPR) effect. These engineered nanosystems allow for precise encapsulation or conjugation of chemotherapeutic agents, nucleic acids, and imaging probes, with tunable release profiles.
View Article and Find Full Text PDF