Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Noni seed oil (NSO), a potentially edible oil rich in bioactive compounds, requires refining before consumption. However, this process may alter its chemical composition and functional properties. This study employed foodomics analysis and in activity assays to evaluate the effects of refining on NSO quality, including chemical characteristics, lipid profiles, volatile compounds, phenolic compounds, and anti-inflammatory properties. Refining significantly altered the fatty acid composition of polar lipids, while exerting minimal impact on that of total lipids. The degumming step reduced phytosterols and phenolic compounds, whereas decolorization decreased tocopherol levels. Scopoletin and kaempferol were the predominant polyphenols, with scopoletin being more susceptible to refining. Degumming altered glycerophospholipid and saccharolipid profiles, while deacidification influenced sphingolipid and fatty acyl compositions. Decolorization primarily modified triacylglycerol profiles. Among the 29 volatile compounds identified, (E, E)-2,4-decadienal, ethyl caprylate, ethyl hexanoate, hexanal, and hexyl caprylate were key differential volatiles. Although NSO exhibited potential anti-inflammatory activity, this was notably diminished by the refining process, particularly during deodorization. These findings provide valuable insights for NSO development and quality control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221456PMC
http://dx.doi.org/10.1016/j.crfs.2025.101117DOI Listing

Publication Analysis

Top Keywords

volatile compounds
12
noni seed
8
seed oil
8
compounds anti-inflammatory
8
anti-inflammatory activity
8
profiles volatile
8
phenolic compounds
8
refining
6
compounds
6
foodomics insights
4

Similar Publications

Microfluidic paper-based analytical devices for food spoilage detection: emerging trends and future directions.

Talanta

September 2025

Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam. Electronic address:

Food spoilage poses a global challenge with far-reaching consequences for public health, economic stability, and environmental sustainability. Conventional analytical methods for spoilage detection though accurate are often cost-prohibitive, labor-intensive, and unsuitable for real-time or field-based monitoring. Microfluidic paper-based analytical devices (μPADs) have emerged as a transformative technology offering rapid, portable, and cost-effective solutions for food quality assessment.

View Article and Find Full Text PDF

Analysis of flavor formation and metabolite changes during production of Double-Layer Steamed Milk Custard made from buffalo milk.

PLoS One

September 2025

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, China.

Double-Layer Steamed Milk Custard (DLSMC) is a famous traditional Chinese dessert. This study aimed to analyze the flavor and the changes in metabolites during different stages of DLSMC preparation, including raw buffalo milk, thermo-processing, first and second-layer milk skin formation. Electronic nose and electronic tongue were employed to preliminarily assess the overall flavor characteristics between these stages.

View Article and Find Full Text PDF

This study investigates the impact of a defined starter culture on the fermentation of cocoa beans and its influence on the production of volatile and non-volatile compounds related to sensory quality. A microbial consortium comprising Saccharomyces cerevisiae, Pichia kudriavzevii, Levilactobacillus brevis, and Acetobacter okinawensis was selected based on their enzymatic activity and acid regulation properties. Fermentation trials showed that the starter culture enhanced the synthesis of key volatile compounds, particularly esters and higher alcohols, such as 2-phenylethanol and 2-phenylethyl acetate, which contribute floral and fruity aromas.

View Article and Find Full Text PDF

Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.

View Article and Find Full Text PDF

Exploring Carbon-Sulfur (CS) Lyase Enzymes across Microbial Diversity for Enhanced Thiol Release in Beer and Wine.

J Agric Food Chem

September 2025

PhyMedExp - Inserm U1046 - CNRS UMR 9214, CHU Arnaud de Villeneuve Bâtiment Crastes de Paulet, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 05 34295, France.

Different precursors of volatile sulfur compounds (VSCs) are present in fermented beverages, such as wine and beer. Carbon-sulfur (CS) lyases are enzymes that play a crucial role in releasing aromas from these varietal thiol precursors. These enzymes are expressed by various organisms, including yeasts and bacteria, involved in fermentation processes during brewing and winemaking.

View Article and Find Full Text PDF