98%
921
2 minutes
20
Cup-like nuclear morphological alterations in acute myeloid leukemia (AML) blasts have been widely correlated with Nucleophosmin 1 (NPM1) mutations. NPM1-mutated AML has earned recognition as a distinct entity among myeloid tumors, but the absence of a thoroughly established tool for its morphological analysis remains a notable gap. Holographic tomography (HT) can offer a label-free solution for quantitatively assessing the 3D shape of the nucleus based on the volumetric variations of its refractive indices (RIs). However, traditional HT methods analyze adherent cells in a 2D layer, leading to non-isotropic reconstructions due to missing cone artifacts. Here we show for the first time that holo-tomographic flow cytometry (HTFC) achieves quantitative specificity and precise capture of the nucleus volumetric shape in AML cells in suspension. To retrieve nucleus specificity in label-free RI tomograms of flowing AML cells, we conceive and demonstrate in a real-world clinical case a novel strategy for segmenting 3D concave nuclei. This method implies that the correlation between the "phenotype" and "genotype" of nuclei is demonstrated through HTFC by creating a challenging link not yet explored between the aberrant morphological features of AML nuclei and NPM1 mutations. We conduct an ensemble-level statistical characterization of NPM1-wild type and NPM1-mutated blasts to discern their complex morphological and biophysical variances. Our findings suggest that characterizing cup-like nuclei in NPM1-related AML cells by HTFC may enhance the diagnostic approach for these tumors. Furthermore, we integrate virtual reality to provide an immersive fruition of morphological changes in AML cells within a true 3D environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222964 | PMC |
http://dx.doi.org/10.1038/s41377-025-01913-y | DOI Listing |
Med Oncol
September 2025
Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.
View Article and Find Full Text PDFBackground: Angioimmunoblastic T-cell lymphoma (AITL) is a rare and aggressive form of peripheral T-cell lymphoma, accounting for 1 - 2% of non-Hodgkin lymphomas. Diagnosis is challenging, and there is no established standard first-line treatment. This case report highlights a rare progression from AITL to therapy-related acute myeloid leukemia (AML-pCT) following cytotoxic chemotherapy.
View Article and Find Full Text PDFBackground: This study aims to gain further insights into the characteristics of the rare subtype of acute myeloid leukemia (AML) with BCR∷ABL by analyzing laboratory detection results of various gene mutations, such as NPM1.
Methods: Laboratory detection results of multiple gene missense mutations, including NPM1, were analyzed in a case of primary AML with BCR∷ABL.
Results: The patient exhibited morphological features of acute leukemia in the bone marrow.
J Immunother Cancer
September 2025
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
Background: Patients with acute myeloid leukemia (AML) are often older, which brings challenges of endurance and persistent efficacy of autologous chimeric antigen receptor (CAR)-T cell therapies. Allogenic CAR-natural killer (NK) cell therapies may offer reduced toxicities and enhanced anti-leukemic potential against AML. CD33 CAR-NK cells have been investigated for AML therapy.
View Article and Find Full Text PDFBlood Adv
September 2025
Institut de Recherches Cliniques de Montreal - IRCM, Montreal, Quebec, Canada.
Acute myeloid leukemia (AML) with rearrangement of the mixed lineage leukemia gene express MLL-AF9 fusion protein, a transcription factor that impairs differentiation and drives expansion of leukemic cells. We report here that the zinc finger protein GFI1 together with the histone methyltransferase LSD1 occupies the promoter and regulates expression of the lncRNA ELDR in the MLL-r AML cell line THP-1. Forced ELDR overexpression enhanced the growth inhibition of an LSD1i/ATRA combination treatment and reduced the capacity of these cells to generate leukemia in xenografts, leading to a longer leukemia-free survival.
View Article and Find Full Text PDF