Contribution of dietary methionine to gut health and its related diseases: implications for precision nutrition.

Crit Rev Food Sci Nutr

Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gut health is intricately linked to energy homeostasis, stress resistance, inflammation, and longevity. Methionine (Met) intake significantly influences gut health, with both supplementation and restriction showing distinct effects. While appropriate Met supplementation offers benefits, excessive intake can be harmful, whereas Met restriction appears to improve overall health of the body, especially the gut. This review synthesizes research on Met's role in gut health, highlighting its metabolism, interactions with the intestinal microbiota, and effects on oxidative stress, inflammation, and permeability in the intestine. The possible reason for Met intake influences the risk of metabolic diseases such as obesity, diabetes, cardiovascular disease, and cognitive impairment, thus influencing lifespan was explored, which is potentially via gut health. In addition, strategies for achieving precision nutrition of Met, including dietary adjustments, production of Met-specific foods, bioengineering plant strains, and methioninase supplementation, were proposed. These insights aim to deepen the understanding of Met's effects on gut health and guide interventions for improving health outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2025.2527425DOI Listing

Publication Analysis

Top Keywords

gut health
24
health
8
precision nutrition
8
met intake
8
intake influences
8
gut
7
met
5
contribution dietary
4
dietary methionine
4
methionine gut
4

Similar Publications

Background: Intestinal cells receive incoming signals from neighboring cells and microbial communities. Upstream signaling pathways transduce these signals to reach transcription factors (TFs) that regulate gene expression. In inflammatory bowel disease (IBD), most single nucleotide polymorphisms (SNPs) are in non-coding genomic regions containing TF binding sites.

View Article and Find Full Text PDF

Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.

View Article and Find Full Text PDF

Harnessing biomarkers to guide immunotherapy in esophageal cancer: toward precision oncology.

Clin Transl Oncol

September 2025

Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman, University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia.

Esophageal cancer (EC) is one of the most serious health issues around the world, ranking seventh among the most lethal types of cancer and eleventh among the most common types of cancer worldwide. Traditional therapies-such as surgery, chemotherapy, and radiation therapy-often yield limited success, especially in the advanced stages of EC, prompting the pursuit of novel and more effective treatment strategies. Immunotherapy has emerged as a promising option; nonetheless, its clinical success is hindered by variable patient responses.

View Article and Find Full Text PDF

From the Lab to the Plate: How Gut Microbiome Science is Reshaping Our Diet.

J Nutr

September 2025

University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France; University Paris-Saclay, INRAE, MICALIS, 78350 Jouy-en-Josas, France. Electronic address:

This review explores the century-long trajectory of gut microbiome research and its contribution to shaping our modern diet. It further highlights the transformative potential of current discoveries to revolutionize future dietary habits and nutritional practices. From the pioneering work of E.

View Article and Find Full Text PDF

Background: Dietary fiber supports metabolic health via microbial fermentation, producing short-chain fatty acids (SCFAs). However, metabolic responses to fiber vary between individuals, potentially due to differences in gut microbiota composition. The Prevotella-to-Bacteroides (P/B) ratio has emerged as a potential biomarker for fiber responsiveness.

View Article and Find Full Text PDF