Tetrel, nonconventional hydrogen bonds, and noticeable role of dispersion in complexes of fluoroform and carbon dichalcogenides.

Phys Chem Chem Phys

Laboratory of Computational Chemistry and Modelling (LCCM), Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City 590000, Vietnam.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Weak noncovalent interactions in complexes between fluoroform and carbon dichalcogenides are explored using highly accurate quantum chemical calculations. Tetrel and hydrogen bonds stabilize these binary systems, with tetrel bonds dominating oxygen-containing complexes and hydrogen bonds prevailing in oxygen-free ones. Distinct characteristics are also found between the two groups in terms of electrostatic contributions. In the former, electrostatics play a secondary role, while in the latter, they are the least attractive term. In all complexes, dispersion interactions predominantly stabilize the most stable structures, with a more pronounced effect in complexes containing heavier chalcogens. The hydrogen bonds in all complexes are purely noncovalent in nature and exhibit blue shifts in the C-H stretching frequency to varying degrees. Detailed analysis of the linear hydrogen bonds in oxygen-containing complexes suggests that the blue shift is a short-range phenomenon, which results from a balance between blue-shift-driving exchange forces and red-shift-driving electrostatic interactions. Meanwhile, dispersion forces are found to exert red-shifting effects.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cp01508aDOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
20
complexes fluoroform
8
fluoroform carbon
8
carbon dichalcogenides
8
oxygen-containing complexes
8
complexes
7
bonds
6
hydrogen
5
tetrel nonconventional
4
nonconventional hydrogen
4

Similar Publications

Acetylesterase, produced by , plays a crucial role in deacetylating hemicellulose during pulp production. Thermostable variants of this enzyme, although rare, can significantly enhance industrial efficiency by retaining activity at high temperatures. This research aims to design a thermostable variant of acetylesterase from (EC 3.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

Differentiating the 2D Passivation from Amorphous Passivation in Perovskite Solar Cells.

Nanomicro Lett

September 2025

College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Pingshan, 518118, Shenzhen, People's Republic of China.

The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films.

View Article and Find Full Text PDF

Carbon-hydrogen bond activation is a pillar of synthetic chemistry. While it is generally accepted that Pd is more facile than Ni in C-H activation catalysis, there are no experimental platforms available to directly compare the magnitude of C-H bond weakening between Ni and Pd prior to bond scission. This work presents the first direct measurements of C(sp)-H bond acidity (p) and bond dissociation free energy (BDFE) for a species containing a ligated alkane-palladium interaction (RCH···Pd), also known as an agostic interaction.

View Article and Find Full Text PDF

Sulfone bonding is an emerging dipole-dipole interaction between sulfone groups. Herein, sulfone bonding is used for the first time for engineering tough hydrogels. Sulfone-bond-toughened hydrogels are prepared by copolymerizing acrylamide with a sulfone-functionalized monomer.

View Article and Find Full Text PDF