98%
921
2 minutes
20
Background And Objective: Breast cancer is the most common cancer among women worldwide, making early detection through breast screening crucial for improving patient outcomes. Digital Breast Tomosynthesis (DBT) is an advanced radiographic technique that enhances clarity over traditional mammography by compiling multiple X-ray images into a 3D reconstruction, thereby improving cancer detection rates. However, the large data volume of DBT poses a challenge for timely analysis. This study aims to introduce a transparent AI system that not only provides a prediction but also an explanation of that prediction, expediting the analysis of DBT scans while ensuring interpretability.
Methods: The study employs a two-stage deep learning process. The first stage uses state-of-the-art Neural Network (NN) models, specifically YOLOv5 and YOLOv8, to detect lesions within the scans. An ensemble method is also explored to enhance detection capabilities. The second stage involves classifying the identified lesions using ProtoPNet, an inherently transparent NN that leverages prototypical part learning to distinguish between benign and cancerous lesions. The system facilitates clear interpretability in decision-making, which is crucial for medical diagnostics.
Results: The performance of the AI system demonstrates competitive metric results for both detection and classification tasks (a recall of 0.76 and an accuracy of 0.70, respectively). The evaluation metrics, together with the validation by expert radiologists through clinical feedback, highlight the potential of the system for future clinical relevance. Despite challenges such as dataset limitations and the need for more accurate ground truth annotations, which limit the final values of the metrics, the approach shows significant advancement in applying AI to DBT scans.
Conclusions: This study contributes to the growing field of AI in breast cancer screening by emphasizing the need for systems that are not only accurate but also transparent and interpretable. The proposed AI system marks a significant step forward in the timely and accurate analysis of DBT scans, with potential implications for improving early breast cancer detection and patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12212108 | PMC |
http://dx.doi.org/10.1016/j.csbj.2025.06.008 | DOI Listing |
JMIR Hum Factors
September 2025
KK Women's and Children's Hospital, Singapore, Singapore.
Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.
View Article and Find Full Text PDFJAMA Surg
September 2025
Department of Population Health, NYU Grossman School of Medicine, New York, New York.
Int J Surg
September 2025
Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People's Republic of China.
Med Oncol
September 2025
Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, Kolkata, India.
Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).
View Article and Find Full Text PDF