98%
921
2 minutes
20
Extreme light confinement down to the atomic scale has been theoretically predicted for ultrathin, Ta-based transition metal dichalcogenides (TMDs). In this work, we report the observation of highly confined plasmons in 2H-TaS monolayers and bilayers via momentum-resolved electron energy loss spectroscopy (q-EELS), with a resolution of 0.0056 Å. Momentum-dispersed two-dimensional (2D) plasmon resonances were found to exhibit a lateral confinement ratio up to 300 at large wave vectors of q = 0.15 Å and slow light behaviour with a group velocity ~10c. Moreover, we observed a transition from 2D to 3D Coulomb interaction in the high-momentum regime, equivalent to light confinement volumes of 1-2 nm. Remarkably, the resonant modes do not enter the electron-hole continuum, potentially enabling even further enhanced optical field confinements for this material at cryogenic temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216657 | PMC |
http://dx.doi.org/10.1038/s41467-025-60814-1 | DOI Listing |
J Colloid Interface Sci
September 2025
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650093, China.
Encapsulation of non-noble bimetallic nanoparticles within a zeolite framework can improve the stability and accessibility of active sites, but the single microporous structure and poor metal stability decreased the catalytic performance of the catalyst. Here, 3D hierarchical ZSM-5 zeolite encapsulated NiCo nanoparticles (NiCo@3DHZ5) were synthesized by Bottom-up confined steam-assisted crystallization (SAC) one-pot hydrothermal method and applied to the hydrodeoxygenation of vanillin. A series of characterizations showed that highly stable alloyed NiCo nanoparticles were encapsulated in a framework of 3DHZ5, the strong metal-zeolite interactions resulted in highly dispersed NiCo nano-alloys facilitated hydrogen adsorption and spillover of active hydrogen atoms, and the 3D hierarchical structure promoted oxygenated substrate diffusion, the synergy interaction between the alloy particles confined in the 3DHZ5 pores and the acidic sites on the zeolite surface promoted the selective conversion of vanillin.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.
View Article and Find Full Text PDFLangmuir
September 2025
Neutron Scattering Division, Oak Ridge National Laboratory, MS 6473, Oak Ridge, Tennessee 37831 United States.
Mordenite ((Ca,Na,K)AlSiO·7HO) is a natural and synthetic nanoporous zeolite containing several channels of different sizes in its structure. Because of this, its structure provides an important opportunity to study the relationship between confined and ultraconfined water as these channels have sizes between those typical of these water environments. In this study, the properties of water molecules in these environments were analyzed using inelastic and quasielastic neutron spectroscopy of a natural mordenite.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam 781039, India.
The efficient and sustainable remediation of contaminated water calls for catalytic systems that must clean broadly, endure widely, and last repeatedly. In this regard, we report the development of sulfonate-functionalized core-shell hydrogel beads embedded with synthesized gold nanoparticles (AuNPs) that exhibit intrinsic oxidase-like activity without requiring external light or chemical oxidants. The sulfonate ligands modulate the surface electronic environment of the AuNPs, facilitating singlet oxygen generation via a nonplasmonic, radiationless mechanism.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.
View Article and Find Full Text PDF