Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Preserved/rescued mitochondrial functions have a significant effect on maintaining neurogenesis, axonal carriage, and synaptic plasticity following spinal cord injury (SCI). We fabricated an ingenious redox-responsive strategy for commanded liberation of NADH (reduced form of nicotinamide-adenine dinucleotide) by bioactive diselenide-containing biodegradable mesoporous silica nanoparticles (). The nanocarrier-embedded NADH can be liberated in a controlled pattern through the cleavage of diselenide bonds in the presence of reactive oxygen species (ROS) or glutathione (GSH). The NAD was regenerated by the reactions between released NADH and harmful ROS to antagonize mitochondrial dysfunction and increase ATP synthesis, promoting axon regeneration across SCI areas. This nanosystem increased the stability of NADH during prolonged blood circulation time, reduced the clearance rate, exhibited significant anti-inflammatory as well as neuroprotective effects and enhanced the regeneration of electrophysiological conduction capacity across SCI areas. Importantly, suppressed glial scar formation and promoted neuronal generation as well as stretching of long axons throughout the glial scar, thereby improving actual restoration of locomotor functions in mice with SCI and exerting ascendant therapeutic effects. Targeting of mitochondrial dysfunction is a potential approach for SCI treatment and may be applied to other central nervous system diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199316PMC
http://dx.doi.org/10.1002/EXP.70012DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
8
mitochondrial functions
8
spinal cord
8
cord injury
8
mitochondrial dysfunction
8
sci areas
8
glial scar
8
sci
5
dual-responsive multi-functional
4
multi-functional silica
4

Similar Publications

Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).

View Article and Find Full Text PDF

Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.

Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

The formation of carbinolamine represents the crucial initial step in the aldol reaction, specifically involving the interaction between p-nitrobenzaldehyde and acetone, facilitated by amine-catalyzed mesoporous silica nanoparticles (amine-MSN). In this process, a nitrogen atom from propylamine, which acts as the catalytic moiety, engages in the formation of a covalent bond with a carbon atom from acetone, leading to the generation of a carbinolamine intermediate. This reaction is significantly influenced by the presence of silanol groups located on the surface of the amine-MSN, which contribute to the catalytic activity.

View Article and Find Full Text PDF

Objective: Through a scoping review, this study meticulously mapped and characterized these nanostructured clays used to release antibacterial active compounds from direct restorative dental materials.

Material And Methods: The systematic approach involved searches in the PubMed/MEDLINE, Lilacs, Web of Science, Scopus, ScienceDirect, and Embase databases. Two independent and calibrated researchers (kappa: 0.

View Article and Find Full Text PDF